您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2009, Vol. 39 ›› Issue (3): 56-61.

• 控制科学与工程 • 上一篇    下一篇

观测时滞连续系统的白噪声H2估计

张志钢 张承慧 赵洪国 焉杰   

  1. 张志钢,张承慧:山东大学控制科学与工程学院, 山东 济南 250061;赵洪国:泰山学院信息科学技术学院, 山东 泰安 271021;焉杰:山东科技大学信息与电气工程学院, 山东 青岛 266510
  • 收稿日期:2009-04-07 出版日期:2009-06-16 发布日期:2009-06-16
  • 作者简介:张志钢(1972-), 男, 山东文登人, 副教授,博士研究生,研究方向为最优滤波、故障诊断等. E-mail:leo_joh@126.com
  • 基金资助:

    国家自然科学基金项目(60774004,60804034); 山东省自然科学基金项目(Y2008G04,Z2007G01,Y2007G34)

H2 white noise estimation for linear continuous-time systems with delayed measurements

  1. ZHANG Zhi-gang:School of Control Science and Engineering, Shandong University, Jinan 250061, China; ZHAO Hong-guo:School of Information Science and Technology,  Taishan University, Taian 271021, China; YAN Jie:College of Information and Electrical Engineering, Shandong University of Science and Technology, Qingdao 266510, China)
  • Received:2009-04-07 Online:2009-06-16 Published:2009-06-16

摘要:

针对带有观测时滞的线性连续系统, 研究了输入白噪声最优估计器的设计问题. 基于新息重组分析理论和Hilbert空间的正交投影定理, 提出了一种简便有效的新方法. 采用的关键技术是将时滞观测转化为无时滞观测, 从而可以通过求解与原系统同维的两个微分Riccati方程, 得到白噪声的最优估计器. 该方法计算简单, 无须计算复杂的偏微分Riccati方程或算子Riccati方程.

关键词: 去卷;新息重组;Riccati方程;时滞系统;连续系统

Abstract:

he H2 optimal input white noise estimator for linear continuous-time stochastic systems with delayed measurements was studied. The proposed approach was based on the re-organization innovation methods and projection theory in Hilbert space. The key technique of the proposed algorithm was converting the delayed measurements to non-delayed measurements. Then, The optimal white noise estimators were given by computing the solution of two standard Riccati equations with the same order as that of the original system. The proposed method is sample and does not need to compute both complex partial differential equation and operator equation of Riccati.

Key words: deconvolution; re-organized innovation; Riccati equation; time-delay systems; continuous-time system

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!