您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 93-98.doi: 10.6040/j.issn.1672-3961.0.2015.031

• • 上一篇    

蝶翅结构负载银颗粒表面增强拉曼散射性能

刘德琦,张帆,范同祥   

  1. 上海交通大学材料科学与工程学院, 上海 200240
  • 收稿日期:2015-02-09 出版日期:2016-02-20 发布日期:2015-02-09
  • 通讯作者: 范同祥(1971- ),山东潍坊人, 男,教授,博士, 主要研究方向为生物模拟材料, 特种结构金属基功能复合材料.E-mail:txfan@sjtu.edu.cn E-mail:lenny1234@sjtu.edu.cn
  • 作者简介:刘德琦(1989- ),辽宁沈阳人,男,硕士研究生,主要研究方向为表面增强拉曼散射材料. E-mail:lenny1234@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金(No51172141)资助,蝶翅分级构造碳素材料及其结构辅助超黑机制研究

The surface enhanced Raman scattering performance of three-dimensional structures of butterfly with silver nano-particles

LIU Deqi, ZHANG Fan, FAN Tongxiang   

  1. School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
  • Received:2015-02-09 Online:2016-02-20 Published:2015-02-09

摘要: 将银粗糙化的蝶翅三维结构引入到表面增强拉曼散射(surface enhanced Raman scattering, SERS)基材中,提高检测效果。采用绿带翠凤蝶蝶翅作为基板,将纳米银金属颗粒负载其上,合成了经有序粗糙化的表面增强拉曼散射基底。采用场发射扫描电镜及透射电镜分析了有序银粗糙化蝶翅SERS基底的形貌特征。并以罗丹明6G作为探针分子,可检测到浓度低至10-14mol/L的标样溶液,且检测效果好于二维平板SERS基底,经计算得到绿带翠凤蝶SERS基底的增强因子为1.57×107。在试验的基础上,结合三维有限时域差分的计算方法(finite difference time domain, FDTD),模拟计算得到绿带翠凤蝶SERS基底的电场强度E分布,其log|E|2的值为3.85,其对激发光的反射率仅为6%。研究表明银粗糙化的蝶翅三维结构,可以使表面的电场强度有显著增强。

关键词: 银纳米颗粒, 蝶翅微观结构, 反射率, 电场强度, 有限时域差分法

Abstract: The wing scales of Papilio maackii butterflies was employed as the scaffold for arranging silver nano-particles to improve the activity of SERS. The obtained three-dimensional micro-structures roughened with silver nano-particles were characterized by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Using Rhodamine 6G(R6G)as probe molecule, the analytical enhancement factor of Papilio maackii SERS substrate was found to reach 1.57×107.FDTD calculation was conducted. The value of the log|E|2 of Papilio maackii substrate reached up to 3.85 and the reflection was 6%.The result showed that the activity of SERS could be enhanced dramatically through arranging silver nano-particles on the micro-structure of Papilio maackii butterfly scales.

Key words: micro-structures of butterfly scale, the intensity of the electric field, FDTD, reflection, sliver nano-particles

中图分类号: 

  • O657.37
[1] ALBRECHT M G, CREUGHTON J A. Anomalously intense Raman spectra of pyridine at a silver electrode[J].Journal of the American Chemical Society, 1977, 99(15):5215-5217.
[2] WANG D S, CHEW H, KERKER M. Enhanced Raman scattering at the surface(SERS)of a spherical particle[J].Applied Optics, 1980, 19(14):2256-2257.
[3] 黄延敏, 主沉浮,陈淑祥, 等. 微纳米聚丙烯保鲜盒中微纳米银向食品模拟液中的迁移研究[J].山东大学学报(工学版), 2010, 40(2):110-112. HUANG Yanmin, ZHU Chenfu, CHEN Shuxiang, et al. Micro/nano-silver migration into food simulations from micro/nano polypropylene chambers[J]. Journal of Shandong University(Engineering Science), 2010, 40(2):110-112.
[4] KNEIPP K, WANG Y, KNEIPP H, et al.Single molecule detection using surface-enhanced Raman scattering(SERS)[J].Physical Review Letters, 1997, 78(9):1667-1674.
[5] 胡冰,徐蔚青,王魁香.由介电函数探讨效应的电磁增强机理[J].吉林大学自然科学学报, 2001, 41(2):57-63. HU Bing, XU Weiqing, WANG Kuixiang, et al. Discussion on the electromagnetic theory of SERS according to dielectric function [J]. Acta Scientiarum Naturalium Universitatis Jilinensis, 2001, 41(2):57-63.
[6] HARTLAND G V.Coherent vibrational motion in metal particles: etermination of the vibrational amplitude and excitation mechanism[J].The Journal of Chemical Physics, 2002, 116(18):8048-8055.
[7] SCHATZ G C.Theoretical studies of surface enhanced Raman scattering[J].Accounts of Chemical Research, 1984, 17(10):370-376.
[8] NEVIERE M, REINISCH R.Electromagnetic study of the surface-plasmon-resonance contribution to surface-enhanced Raman scattering[J].Physical Review B, 1982, 26(10):5403-5412.
[9] WANG D S, KERKER M.Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids[J].Physical Review B, 1981, 24(4):1777-1783.
[10] JENSEN T R, DUBAL M L, KELLY K L, et al. Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles[J].The Journal of Physical Chemistry: B, 1999, 103(45):9846-9853.
[11] NOVAK J P, BROUSSEAU L C, VANCE F W.Nonlinear optical properties of molecularly bridged gold nanoparticle arrays[J].Journal of the American Chemical Society, 2000, 122(48):12029-12030.
[12] MALINSKY M D, KELLY K L, SCHATZ G C, et al.Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers[J].Journal of the American Chemical Society, 2001, 123(7):1471-1482.
[13] ZHOU Ying, LI Xuanhua, REN Xingang. Designing and fabricating double resonance substrate with metallic nanoprticles-metallic grating coupling system for highly intensified suface-enhanced Raman spectroscopy[J].Analyst, 2014, 139(67):4799-4804.
[14] LIBERMAN V, YILMAZ C, BLOOMSTEIN T M, et al.A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates[J].Advanced Materials, 2010, 22(38):4298-4302.
[15] TAN Yongwen, GU Jiajun, ZANG Xining, et al.Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures[J].Angew Chemie, 2011, 50(25):8370-8374.
[16] CHWARTZHERG A M, GRANT C D, WOLCOTT A, et al.Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate[J].The Journal of Physical Chemistry: B, 2004, 108(50):19191-19197.
[17] 陈挺, 覃继宁, 范同祥.仿蝉翼结构镍磷复合材料减反性能研究[J].山东大学学报(工学版), 2014, 44(1):80-84. CHEN Ting, QIN Jining, FAN Tongxiang. Anti-reflective property of Ni-P/cicada microstructure composites[J]. Journal of Shandong University(Engineering Science), 2014, 44(1):80-84.
[18] 于奎龙, 范同祥.蝶翅二维光子晶体结构Y2O3:Eu3+的仿生制备[J].山东大学学报(工学版), 2012, 42(1):121-126. YU Kuilong, FAN Tongxiang. Biomimetic fabrication of 2D photonic Y2O3:Eu3+ phosphor templated from butterfly wing scales [J]. Journal of Shandong University(Engineering Science), 2012, 42(1):121-126.
[19] 丁月蕾,刘辉晖,范同祥.蝶类纳米点阵复眼结构超黑材料探索研究[J].山东大学学报(工学版), 2011, 41(2):135-139. DING Yuelei, LIU Huihui, FAN Tongxiang. High efficient anti-reflection of ultra-black carbon materials tailoring the nano structure of butterfly compound eyes [J]. Journal of Shandong University(Engineering Science), 2011, 41(2):135-139.
[20] LOU S, GUO X, FAN T, et al.Butterflies: inspiration for solar cells and sunlight water-splitting catalysts[J].Energy & Environmental Science, 2012, 5(11):9195-9216.
[21] JENSEN L, SCHATZ G C. Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory[J].The Journal of Physical Chemistry: A, 2006, 110(18):5973-5977.
[22] YANG W H, SCHATZ G C, VAN Duyne R P.Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes[J].The Journal of Chemical Physics, 1995, 103(3):869-875.
[23] HUMMEL R E, WISSMANNi P. Handbook of Optical Properties: Optics of Small Particles,Interfaces and Surfaces, Volumn II[M].Florida: CRC Press, 1996.
[24] LE Ru E C, BLACKIE E, MEYER M, et al. Surface enhanced Raman scattering enhancement factors: a comprehensive study[J].The Journal of Physical Chemistry:C, 2007, 111(37):13794-13803.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王换,周忠眉. 一种基于聚类的过抽样算法[J]. 山东大学学报(工学版), 2018, 48(3): 134 -139 .
[2] 阳爱民1,周咏梅1,邓河2,周剑峰3. 一种网络流量分类特征的产生及选择方法[J]. 山东大学学报(工学版), 2010, 40(5): 1 -7 .
[3] 尤鸣宇,陈燕,李国正. 不均衡问题中的特征选择新算法:Im-IG[J]. 山东大学学报(工学版), 2010, 40(5): 123 -128 .
[4] 吴国瑶,马立勇. 基于B样条FFD模型配准的虹膜图像融合方法[J]. 山东大学学报(工学版), 2010, 40(5): 24 -27 .
[5] 王兰忠, 孟文杰. 远程教育中视频感知加密算法[J]. 山东大学学报(工学版), 2015, 45(4): 40 -44 .
[6] 梁泽华,崔耀东,张雨. 有顺序依赖损耗的一维下料问题[J]. 山东大学学报(工学版), 2018, 48(3): 75 -80 .
[7] 孙静宇,余雪丽,陈俊杰, 李鲜花. 采样特异性因子及异常检测[J]. 山东大学学报(工学版), 2010, 40(5): 56 -59 .
[8] 程显毅1,2,朱倩2,管致紧1. 基于agent的模式表示模型AIM[J]. 山东大学学报(工学版), 2010, 40(5): 72 -76 .
[9] 叶子云,杨金锋. 一种基于加权图模型的手指静脉识别方法[J]. 山东大学学报(工学版), 2018, 48(3): 103 -109 .
[10] 刘义辉,李林,刘凯,孙杰. 高速列车车轴-轴承温度特性及弛缓机理[J]. 山东大学学报(工学版), 2016, 46(2): 116 -121 .