山东大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (5): 41-46.
丁彦,李永忠*
DING Yan, LI Yong-zhong*
摘要: 针对网络入侵检测数据存在大量冗余信息和传统聚类算法对离群点检测不足的问题,提出一种基于主成分分析(principal component analysis, PCA)和半监督聚类的入侵检测算法。首先使用PCA对数据进行特征提取,消除数据间的冗余属性;然后利用少量已标记样本和成对约束信息,通过引入竞争凝聚让系统主动学习,以实现对大量未知样本的检测。在入侵检测数据集和UCI基准数据集上的实验结果表明,该算法能有效提高系统的性能。
中图分类号:
[1] | 肖苗苗,魏本征,尹义龙. 基于BFOA和K-means的复合入侵检测算法[J]. 山东大学学报(工学版), 2018, 48(3): 115-119. |
[2] | 张米露,王天真,汤天浩,辛斌. 一种模式关联主元分析的海流机故障检测方法[J]. 山东大学学报(工学版), 2017, 47(5): 123-129. |
[3] | 庞人铭,王波,叶昊,张海峰,李明亮. 基于PCA相似度和谱聚类相结合的高炉历史数据聚类[J]. 山东大学学报(工学版), 2017, 47(5): 143-149. |
[4] | 李春彦,刘怡良,王良民*. 车载自组网中基于交通场景的入侵行为检测机制[J]. 山东大学学报(工学版), 2014, 44(1): 29-34. |
[5] | 王昊,华继学,范晓诗. 基于双联支持向量机的入侵检测技术[J]. 山东大学学报(工学版), 2013, 43(6): 53-56. |
[6] | 夏战国,万玲,蔡世玉,孙鹏辉. 一种面向入侵检测的半监督聚类算法[J]. 山东大学学报(工学版), 2012, 42(6): 1-7. |
[7] | 张友新,王立宏. 两阶段近邻传播半监督聚类算法[J]. 山东大学学报(工学版), 2012, 42(2): 18-22. |
[8] | 张道强. 知识保持的嵌入方法[J]. 山东大学学报(工学版), 2010, 40(2): 1-10. |
[9] | 刘元勋,徐秋亮,云晓春 . 面向入侵检测系统的通用应用层协议识别技术研究[J]. 山东大学学报(工学版), 2007, 37(1): 65-69 . |
[10] | 高小伟,蒋晓芸 . BP神经网络在入侵检测系统中的应用及优化[J]. 山东大学学报(工学版), 2006, 36(6): 107-110 . |
|