您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (2): 82-88.doi: 10.6040/j.issn.1672-3961.0.2014.299

• 化学与环境 • 上一篇    下一篇

铁强化微生物除磷的效能及机理

孙翠平, 周维芝, 赵海霞   

  1. 山东大学环境科学与工程学院, 山东 济南 250100
  • 收稿日期:2014-10-27 修回日期:2015-03-18 出版日期:2015-04-20 发布日期:2014-10-27
  • 通讯作者: 周维芝(1970-),女,山东烟台人,教授,博导,博士,主要研究方向为水污染控制.E-mail:wzzhou@sdu.edu.cn E-mail:wzzhou@sdu.edu.cn
  • 作者简介:孙翠平(1990-),女,山东泰安人,硕士研究生,主要研究方向为水污染控制.E-mail:1012044319@qq.com
  • 基金资助:
    国家自然科学基金资助项目(51178255, 41446006);山东省科学技术开发资助项目(2013GHY11511);山东大学基础研究基金资助项目(2014JC035)

Efficiency and mechanism of ferric salt enhanced biological phosphorus removal

SUN Cuiping, ZHOU Weizhi, ZHAO Haixia   

  1. School of Environmental Science and Engineering, Shandong University, Jinan 250100, Shandong, China
  • Received:2014-10-27 Revised:2015-03-18 Online:2015-04-20 Published:2014-10-27

摘要: 从深海菌中筛选出一株高效除磷菌,并研究了铁强化此除磷菌在高盐合成废水中的除磷效能及机理。通过批次试验研究了铁磷物质的量比、初始pH值对除磷效率的影响以及铁强化生物除磷的动力学,并利用扫描电镜和能谱分析对微生物表面形貌进行了研究。结果表明,与单独铁盐和生物除磷相比,铁强化微生物除磷效率更高效且稳定在95%以上。当n(Fe(III)):n(P)=1:1时,铁强化微生物除磷的最大效率达98.50%,相比单纯生物除磷提高30%,而单独铁盐除磷n(Fe(III)):n(P)=2:1~3:1时,除磷率仅90%;当n(Fe(III)):n(P)≤1:1时,铁强化微生物除磷以微生物除磷为主,铁盐辅助,处理后水pH中性且稳定;当物质的量比n(Fe(III)):n(P)>1:1时,由于Fe(III)水解造成pH降低至5.50以下,微生物生长受抑,磷的去除主要靠化学沉淀。废水初始pH在6.0~9.0范围内,铁强化生物除磷去除率均在95%以上。准一级动力学模型能够很好地模拟生物除磷过程;准二级动力学模型能够很好地模拟铁强化生物除磷,且较长时间内无磷释放现象。铁强化生物除磷的机理包括:(1)细菌生长除磷以及胞外聚合物对磷的吸附;(2)在混合液中形成了羟基磷酸铁络合物;(3)在细菌表面形成了由细菌诱导的铁磷微沉淀。

关键词: 化学除磷, 高盐含磷废水, 污水处理, 动力学, 强化生物除磷, Fe(III)

Abstract: An efficient phosphorus (P) removal bacterium strain was screened from deep-sea bacteria, and phosphorus removal efficiency and mechanism by iron enhanced biological treatment were studied in the high salinity synthetic wastewater. The effects of molar ratio Fe(III)/P, initial pH on phosphorus removal and kinetics of iron enhanced biological phosphorus removal were investigated by batch tests, and the surface morphology of bacteria was studied by SEM-EDS (scanning electron microscopy-energy dispersive X-ray spectroscopy). Results showed that the phosphorus removal efficiency of iron enhanced biological treatment was high and stable at more than 95% compared to those of independent iron and biological treatment. Removal efficiency of phosphorus reached the maximum of 98.5% with molar ratio of Fe(III) and P being 1, which increased 30% than that of the biological treatment, whereas the maximum phosphorus removal was 90% with molar ratio of Fe(III) and P ranging from 2 to 3 by independent iron treatment. Phosphorus removal was mainly ascribed to bacterial growth and aided by iron, and pH was kept stable at about 7.2 when molar ratio of Fe(III) and P being not more than 1. Phosphorus removal was mainly by chemical precipitation with molar ratio of Fe(III) and P being more than 1 because that the pH reduced to 5.5 or even lower by Fe(III) hydrolysis and significantly influenced bacterial growth. Phosphorus removal was kept at above 95% at pH of 6~9 with molar ratio ofFe(III) and P being 1. The dynamic pseudo-first-order model could fit the biological phosphorus removal process well, and the pseudo-second-order model could well describe the iron enhanced biological phosphorus removal without phosphorus releasing for a long time. Except the uptake of part of the phosphorus by bacterial growth and bio-sorption by extracellular polymeric substance, the hydroxyl phosphate iron complex compound and iron phosphorus precipitation induced by bacterium also contributed to the phosphorus removal.

Key words: Fe(III), wastewater treatment, enhanced biological phosphorus removal, chemical phosphorus removal, high salinity wastewater containing phosphorus, kinetics

中图分类号: 

  • X52
[1] PARFITT R L, ATKINSON R J, SMART R S C. The mechanism of phosphate fixation by iron oxides[J]. Soil Science Society of America Journal, 1975, 39(5):837-841.
[2] De HAAS D, WENTZELM, EKAMA G. The use of simultaneous chemical precipitation in modified activated sludge systems exhibiting biological excess phosphate removal. Part 1:literature review[J]. Water S A, 2000, 26(4):439-452.
[3] CARAVELLI A H, CONTRERAS E M, ZARITZKY N E. Phosphorous removal in batch systems using ferric chloride in the presence of activated sludges[J]. Hazard Mater, 2010, 177(1-3):199-208.
[4] 田宝珍, 汤鸿霄. 含磷酸盐的三氯化铁水解溶液的化学特征[J]. 环境化学, 1995, 14(4):329-337. TIAN Baozhen, TANG Hongxiao. Ferric chloride containing phosphate chemical characteristics of hydrolysis solution[J]. Environmental Chemistry, 1995, 14(4):329-337.
[5] De GREGORIO C, CARAVELLI A H, ZARITZKY N E. Performance and biological indicators of a laboratory-scale activated sludge reactor with phosphate simultaneous precipitation as affected by ferric chloride addition[J]. Chemical Engineering Journal, 2010, 165(2):607-616.
[6] PARFITT R L, ATKINSON R J, SMART R S C. The mechanism of phosphate fixation by iron oxides[J]. Soil Science Society of America Journal, 1975, 39(5):837-841.
[7] 姜应和, 张发根. 混凝法在城市污水强化处理中的应用[J]. 中国给水排水, 2002, 18(3):30-32. JIANG Yinghe, ZHANG Fagen. The application of coagulation method in the sewage reinforcement treatment[J]. China Water & Wastewater, 2002, 18(3):30-32.
[8] 张萌, 邱琳, 于晓晴. 亚铁盐与高铁盐除磷工艺的对比研究[J]. 高校化学工程学报, 2013, 27(3):519-525. ZHANG Meng, QIU Lin, YU Xiaoqing. Comparison of phosphorus removal processes by ferrous salts and ferric salts[J]. Journal of Chemical Engineering of Chinese Universities, 2013, 27(3):519-525.
[9] LOTTER L H. Combined chemical and biological removal of phosphate in activated sludge plants[J]. Water Science & Technology, 1991, 23(4-6):611-621.
[10] SINGH M, SRIVASTAVA R K. Sequencing batch reactor technology for biological wastewater treatment: a review[J]. Asia-Pacific Journal of Chemical Engineering, 2011, 6(1):3-13.
[11] UYGUR A, KARGI F. Salt inhibition on biological nutrient removal from saline wastewater in a sequencing batch reactor[J]. Enzyme and Microbial Technology, 2004, 34(3):313-318.
[12] NIELSEN P H, SAUNDERS A M, HANSEN A A, et al. Microbial communities involved in enhanced biological phosphorus removal from wastewater-a model system in environmental biotechnology[J]. Current Opinion in Biotechnology, 2012, 23(3):452-459.
[13] 施汉昌, 柯细勇, 徐丽婕. 用化学法强化生物除磷的优化控制[J].中国给水排水, 2002, 18(7):35-38. SHI Hanchang, KE Xiyong, XU Lijie. Optimal control ofenhanced biological phosphorus removal by the chemical method[J]. China Water & Wastewater, 2002, 18(7):35-38.
[14] 郑兴灿, 李亚新. 污水除磷脱氮技术[M]. 北京:中国建筑工业出版社, 1998.
[15] De HAAS D W, WENTZEL M C, EKAMA G A. The use of simultaneous chemical precipitation in modified activated sludge systems exhibiting biological excess phosphate removal Part 6: modelling of simultaneous chemical-biological P removal-review of existing models[J]. Water S A, 2001, 27(2):135-150.
[16] WUHRMANN K. Objectives, technology, and results of nitrogen and phosphorus removal processes[M]. Texas, USA:University of Texas Press, 1968.
[17] 王洪洋, 侯红娟, 周琪. SBR中混凝剂与微生物的协同除污效能[J]. 中国给水排水, 2004, 20(4):38-40. WANG Hongyang, HOU Hongjuan, ZHOU Qi. Collaborative drainage efficiency of coagulant and microbiology in SBR[J]. China Water & Wastewater, 2004, 20(4):38-40.
[18] PLANAVSKY N J, ROUXEL O J. The evolution of the marine phosphate reservoir[J]. Nature, 2010, 467(7319):1088-1090.
[19] 李久义, 吴晓清, 陈福泰, 等. Fe(III)对活性污泥絮体结构和生物絮凝作用的影响[J]. 环境科学学报, 2003, 23(5):582-587. LI Jiuyi, WU Xiaoqing, CHEN Futai, et al. Effects of Fe on floc surface properties and bioflocculation of activated sludge[J]. Journal of Environmental Sciences, 2003, 23(5):582-587.
[20] 刘飞萍, 马鲁铭. 催化铁与生物法耦合除磷工艺特性[J]. 环境工程学报, 2014, 8(2):429-435. LIU Feiping, MA Luming. Characters of coupled phosphorus removal process of catalyzed iron method and biological treatment[J]. Chinese Journal Environmental Engineering, 2014, 8(2):429-435.
[21] 李子富, 云玉攀, 曾灏, 等. 城市污水处理厂化学强化生物除磷的试验研究[J]. 中国环境科学, 2014, 34(12):3070-3077. LI Zifu, YUN Yupan, ZENG Hao, et al. Experimental study on chemically enhanced biological phosphorus removal for municipal wastewater treatment[J]. China Environmental Science, 2014, 34(12):3070-3077.
[22] MURUGAVELH S, KAUSTUBHA MOHANTY. Bioreduction of hexavalent chromium by free cells and cell free extracts of Halomonas sp[J]. Chemical Engineering Journal, 2012, 203:415-422.
[23] SANCHEZ-ROMAN M, RIVADENEYRA M A, VASCONCELOS C. Biomineralization of carbonate and phosphate by moderately halophilic bacteria[J]. FEMS Microbiology Ecology, 2007, 61(2):273-284.
[24] HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5):451-465.
[25] 房平, 邵瑞华, 任娟. 活性炭对苯酚的吸附研究[J]. 炭素技术, 2011, 30(2): 12-16. FANG Ping, SHAO Ruihua, REN Juan. Adsorption of phenol from aqueous solution using activated carbon[J]. Carbon Techniques, 2011, 30(2):12-16.
[26] ERIKSSON L, ALM B. Study of flocculation mechanisms by observing effects of a complexing agent on activated sludge properties[J]. Water Science & Technology, 1991, 24(7):21-28.
[27] MANAS A, BISCANS B, SPERANDIO M. Biologically induced phosphorus precipitation in aerobic granular sludge process[J]. Water Research, 2011, 45(12): 3776-3786.
[1] 肖迪,廉静,纪少波,赵盛晋,徐怀民. 臭氧对甲烷/空气层流火焰传播速度影响规律[J]. 山东大学学报(工学版), 2017, 47(4): 59-63.
[2] 莫正波,胡松涛,胡德栋. 低浓度下亚氯酸钠与盐酸制备二氧化氯的试验研究[J]. 山东大学学报(工学版), 2017, 47(2): 100-105.
[3] 崔青,张长桥,修建新,许士明,卢丽丽. 稠油沥青质胶质降粘机理的分子动力学模拟[J]. 山东大学学报(工学版), 2017, 47(2): 123-130.
[4] 董震,赖艳华,吕明新,郑皓宇,潘继红. 吸附剂综合性能测试与分析[J]. 山东大学学报(工学版), 2016, 46(5): 120-125.
[5] 褚晓东,张荣祥,黄昊怡,唐茂森. 全球能源互联网物理-信息系统协同仿真平台[J]. 山东大学学报(工学版), 2016, 46(4): 103-110.
[6] 白艳艳,曹月欣,张宪玺,张鲁格,孙德志,延辉,张翀. SDS对香豆素在SB-16胶束增溶行为影响[J]. 山东大学学报(工学版), 2016, 46(3): 99-105.
[7] 王娜,陈国栋,陈怡. 基于改进SPH的皮肤表面血流模拟算法[J]. 山东大学学报(工学版), 2016, 46(1): 22-27.
[8] 于松青, 侯承昊, 孙英涛. 基于系统动力学的山东省电力需求预测[J]. 山东大学学报(工学版), 2015, 45(6): 91-98.
[9] 余美琼, 杨金杯, 陈秀宇, 邓殳. 松树锯末对Pb(II)与Ni(II)的吸附研究[J]. 山东大学学报(工学版), 2015, 45(2): 75-81.
[10] 张翠勋, 杨锋苓, 连继咏. 半圆管挡板搅拌槽内的湍流流场[J]. 山东大学学报(工学版), 2015, 45(1): 76-81.
[11] 王丽娟, 石静, 赵方剑. 气液界面上磺基甜菜碱两性表面活性剂分子动力学模拟[J]. 山东大学学报(工学版), 2014, 44(6): 83-89.
[12] 孙宏宇, 张兆玲, 董玉平. 床层压降对主动配风式生物质气化影响分析[J]. 山东大学学报(工学版), 2014, 44(5): 78-82.
[13] 王建明,裴信超,樊现行,刘伟,曹雁超. SPH耦合FEM模拟弹丸撞击对表面形貌的影响[J]. 山东大学学报(工学版), 2013, 43(5): 87-92.
[14] 祁振, 于淑艳, 刘璐, 王曙光*. 石墨烯对四环素的吸附热力学及动力学研究[J]. 山东大学学报(工学版), 2013, 43(3): 63-69.
[15] 刘延俊1, 郑波2,孙兴旺1. 漂浮式海浪发电装置主浮体结构的有限元分析[J]. 山东大学学报(工学版), 2012, 42(4): 98-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!