山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (2): 82-88.doi: 10.6040/j.issn.1672-3961.0.2014.299
孙翠平, 周维芝, 赵海霞
SUN Cuiping, ZHOU Weizhi, ZHAO Haixia
摘要: 从深海菌中筛选出一株高效除磷菌,并研究了铁强化此除磷菌在高盐合成废水中的除磷效能及机理。通过批次试验研究了铁磷物质的量比、初始pH值对除磷效率的影响以及铁强化生物除磷的动力学,并利用扫描电镜和能谱分析对微生物表面形貌进行了研究。结果表明,与单独铁盐和生物除磷相比,铁强化微生物除磷效率更高效且稳定在95%以上。当n(Fe(III)):n(P)=1:1时,铁强化微生物除磷的最大效率达98.50%,相比单纯生物除磷提高30%,而单独铁盐除磷n(Fe(III)):n(P)=2:1~3:1时,除磷率仅90%;当n(Fe(III)):n(P)≤1:1时,铁强化微生物除磷以微生物除磷为主,铁盐辅助,处理后水pH中性且稳定;当物质的量比n(Fe(III)):n(P)>1:1时,由于Fe(III)水解造成pH降低至5.50以下,微生物生长受抑,磷的去除主要靠化学沉淀。废水初始pH在6.0~9.0范围内,铁强化生物除磷去除率均在95%以上。准一级动力学模型能够很好地模拟生物除磷过程;准二级动力学模型能够很好地模拟铁强化生物除磷,且较长时间内无磷释放现象。铁强化生物除磷的机理包括:(1)细菌生长除磷以及胞外聚合物对磷的吸附;(2)在混合液中形成了羟基磷酸铁络合物;(3)在细菌表面形成了由细菌诱导的铁磷微沉淀。
中图分类号:
[1] PARFITT R L, ATKINSON R J, SMART R S C. The mechanism of phosphate fixation by iron oxides[J]. Soil Science Society of America Journal, 1975, 39(5):837-841. [2] De HAAS D, WENTZELM, EKAMA G. The use of simultaneous chemical precipitation in modified activated sludge systems exhibiting biological excess phosphate removal. Part 1:literature review[J]. Water S A, 2000, 26(4):439-452. [3] CARAVELLI A H, CONTRERAS E M, ZARITZKY N E. Phosphorous removal in batch systems using ferric chloride in the presence of activated sludges[J]. Hazard Mater, 2010, 177(1-3):199-208. [4] 田宝珍, 汤鸿霄. 含磷酸盐的三氯化铁水解溶液的化学特征[J]. 环境化学, 1995, 14(4):329-337. TIAN Baozhen, TANG Hongxiao. Ferric chloride containing phosphate chemical characteristics of hydrolysis solution[J]. Environmental Chemistry, 1995, 14(4):329-337. [5] De GREGORIO C, CARAVELLI A H, ZARITZKY N E. Performance and biological indicators of a laboratory-scale activated sludge reactor with phosphate simultaneous precipitation as affected by ferric chloride addition[J]. Chemical Engineering Journal, 2010, 165(2):607-616. [6] PARFITT R L, ATKINSON R J, SMART R S C. The mechanism of phosphate fixation by iron oxides[J]. Soil Science Society of America Journal, 1975, 39(5):837-841. [7] 姜应和, 张发根. 混凝法在城市污水强化处理中的应用[J]. 中国给水排水, 2002, 18(3):30-32. JIANG Yinghe, ZHANG Fagen. The application of coagulation method in the sewage reinforcement treatment[J]. China Water & Wastewater, 2002, 18(3):30-32. [8] 张萌, 邱琳, 于晓晴. 亚铁盐与高铁盐除磷工艺的对比研究[J]. 高校化学工程学报, 2013, 27(3):519-525. ZHANG Meng, QIU Lin, YU Xiaoqing. Comparison of phosphorus removal processes by ferrous salts and ferric salts[J]. Journal of Chemical Engineering of Chinese Universities, 2013, 27(3):519-525. [9] LOTTER L H. Combined chemical and biological removal of phosphate in activated sludge plants[J]. Water Science & Technology, 1991, 23(4-6):611-621. [10] SINGH M, SRIVASTAVA R K. Sequencing batch reactor technology for biological wastewater treatment: a review[J]. Asia-Pacific Journal of Chemical Engineering, 2011, 6(1):3-13. [11] UYGUR A, KARGI F. Salt inhibition on biological nutrient removal from saline wastewater in a sequencing batch reactor[J]. Enzyme and Microbial Technology, 2004, 34(3):313-318. [12] NIELSEN P H, SAUNDERS A M, HANSEN A A, et al. Microbial communities involved in enhanced biological phosphorus removal from wastewater-a model system in environmental biotechnology[J]. Current Opinion in Biotechnology, 2012, 23(3):452-459. [13] 施汉昌, 柯细勇, 徐丽婕. 用化学法强化生物除磷的优化控制[J].中国给水排水, 2002, 18(7):35-38. SHI Hanchang, KE Xiyong, XU Lijie. Optimal control ofenhanced biological phosphorus removal by the chemical method[J]. China Water & Wastewater, 2002, 18(7):35-38. [14] 郑兴灿, 李亚新. 污水除磷脱氮技术[M]. 北京:中国建筑工业出版社, 1998. [15] De HAAS D W, WENTZEL M C, EKAMA G A. The use of simultaneous chemical precipitation in modified activated sludge systems exhibiting biological excess phosphate removal Part 6: modelling of simultaneous chemical-biological P removal-review of existing models[J]. Water S A, 2001, 27(2):135-150. [16] WUHRMANN K. Objectives, technology, and results of nitrogen and phosphorus removal processes[M]. Texas, USA:University of Texas Press, 1968. [17] 王洪洋, 侯红娟, 周琪. SBR中混凝剂与微生物的协同除污效能[J]. 中国给水排水, 2004, 20(4):38-40. WANG Hongyang, HOU Hongjuan, ZHOU Qi. Collaborative drainage efficiency of coagulant and microbiology in SBR[J]. China Water & Wastewater, 2004, 20(4):38-40. [18] PLANAVSKY N J, ROUXEL O J. The evolution of the marine phosphate reservoir[J]. Nature, 2010, 467(7319):1088-1090. [19] 李久义, 吴晓清, 陈福泰, 等. Fe(III)对活性污泥絮体结构和生物絮凝作用的影响[J]. 环境科学学报, 2003, 23(5):582-587. LI Jiuyi, WU Xiaoqing, CHEN Futai, et al. Effects of Fe on floc surface properties and bioflocculation of activated sludge[J]. Journal of Environmental Sciences, 2003, 23(5):582-587. [20] 刘飞萍, 马鲁铭. 催化铁与生物法耦合除磷工艺特性[J]. 环境工程学报, 2014, 8(2):429-435. LIU Feiping, MA Luming. Characters of coupled phosphorus removal process of catalyzed iron method and biological treatment[J]. Chinese Journal Environmental Engineering, 2014, 8(2):429-435. [21] 李子富, 云玉攀, 曾灏, 等. 城市污水处理厂化学强化生物除磷的试验研究[J]. 中国环境科学, 2014, 34(12):3070-3077. LI Zifu, YUN Yupan, ZENG Hao, et al. Experimental study on chemically enhanced biological phosphorus removal for municipal wastewater treatment[J]. China Environmental Science, 2014, 34(12):3070-3077. [22] MURUGAVELH S, KAUSTUBHA MOHANTY. Bioreduction of hexavalent chromium by free cells and cell free extracts of Halomonas sp[J]. Chemical Engineering Journal, 2012, 203:415-422. [23] SANCHEZ-ROMAN M, RIVADENEYRA M A, VASCONCELOS C. Biomineralization of carbonate and phosphate by moderately halophilic bacteria[J]. FEMS Microbiology Ecology, 2007, 61(2):273-284. [24] HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5):451-465. [25] 房平, 邵瑞华, 任娟. 活性炭对苯酚的吸附研究[J]. 炭素技术, 2011, 30(2): 12-16. FANG Ping, SHAO Ruihua, REN Juan. Adsorption of phenol from aqueous solution using activated carbon[J]. Carbon Techniques, 2011, 30(2):12-16. [26] ERIKSSON L, ALM B. Study of flocculation mechanisms by observing effects of a complexing agent on activated sludge properties[J]. Water Science & Technology, 1991, 24(7):21-28. [27] MANAS A, BISCANS B, SPERANDIO M. Biologically induced phosphorus precipitation in aerobic granular sludge process[J]. Water Research, 2011, 45(12): 3776-3786. |
[1] | 肖迪,廉静,纪少波,赵盛晋,徐怀民. 臭氧对甲烷/空气层流火焰传播速度影响规律[J]. 山东大学学报(工学版), 2017, 47(4): 59-63. |
[2] | 莫正波,胡松涛,胡德栋. 低浓度下亚氯酸钠与盐酸制备二氧化氯的试验研究[J]. 山东大学学报(工学版), 2017, 47(2): 100-105. |
[3] | 崔青,张长桥,修建新,许士明,卢丽丽. 稠油沥青质胶质降粘机理的分子动力学模拟[J]. 山东大学学报(工学版), 2017, 47(2): 123-130. |
[4] | 董震,赖艳华,吕明新,郑皓宇,潘继红. 吸附剂综合性能测试与分析[J]. 山东大学学报(工学版), 2016, 46(5): 120-125. |
[5] | 褚晓东,张荣祥,黄昊怡,唐茂森. 全球能源互联网物理-信息系统协同仿真平台[J]. 山东大学学报(工学版), 2016, 46(4): 103-110. |
[6] | 白艳艳,曹月欣,张宪玺,张鲁格,孙德志,延辉,张翀. SDS对香豆素在SB-16胶束增溶行为影响[J]. 山东大学学报(工学版), 2016, 46(3): 99-105. |
[7] | 王娜,陈国栋,陈怡. 基于改进SPH的皮肤表面血流模拟算法[J]. 山东大学学报(工学版), 2016, 46(1): 22-27. |
[8] | 于松青, 侯承昊, 孙英涛. 基于系统动力学的山东省电力需求预测[J]. 山东大学学报(工学版), 2015, 45(6): 91-98. |
[9] | 余美琼, 杨金杯, 陈秀宇, 邓殳. 松树锯末对Pb(II)与Ni(II)的吸附研究[J]. 山东大学学报(工学版), 2015, 45(2): 75-81. |
[10] | 张翠勋, 杨锋苓, 连继咏. 半圆管挡板搅拌槽内的湍流流场[J]. 山东大学学报(工学版), 2015, 45(1): 76-81. |
[11] | 王丽娟, 石静, 赵方剑. 气液界面上磺基甜菜碱两性表面活性剂分子动力学模拟[J]. 山东大学学报(工学版), 2014, 44(6): 83-89. |
[12] | 孙宏宇, 张兆玲, 董玉平. 床层压降对主动配风式生物质气化影响分析[J]. 山东大学学报(工学版), 2014, 44(5): 78-82. |
[13] | 王建明,裴信超,樊现行,刘伟,曹雁超. SPH耦合FEM模拟弹丸撞击对表面形貌的影响[J]. 山东大学学报(工学版), 2013, 43(5): 87-92. |
[14] | 祁振, 于淑艳, 刘璐, 王曙光*. 石墨烯对四环素的吸附热力学及动力学研究[J]. 山东大学学报(工学版), 2013, 43(3): 63-69. |
[15] | 刘延俊1, 郑波2,孙兴旺1. 漂浮式海浪发电装置主浮体结构的有限元分析[J]. 山东大学学报(工学版), 2012, 42(4): 98-102. |
|