山东大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 38-46.doi: 10.6040/j.issn.1672-3961.2.2013.284
姚华传1, 王丽珍2, 吴萍萍2, 邹目权1
YAO Huachuan1, WANG Lizhen2, WU Pingping2, ZOU Muquan1
摘要: 提出一种基于强关联规则的可行动分簇算法(AC_SAR)。AC_SAR算法为每一个对象寻找关联性最强的对象,并通过反对称原则和可连接原则删除和合并相应规则,最终挖掘出涉及事务数据库中所有对象的多个连通子图(簇)。与传统算法相比,新算法无需设置阈值,没有冗余知识,算法的中间挖掘结果及最终生成的簇,能有效地解决诸多领域的实际问题。大量试验结果表明,该新算法具有较高的效率、准确性以及较强的可行动性。
中图分类号:
[1] HAN Jiawei, KAMBER M. 数据挖掘概念与技术 [M]. 2版.范明, 孟小峰, 译. 北京:机械工业出版社, 2007:146-183. [2] 朱孝宇, 王理东, 汪光阳. 一种改进的Apriori挖掘关联规则算法[J].计算机技术与发展, 2006, 16(12):89-90. ZHU Xiaoyu, WANG Lidong, WANG Guangyang. An improvement of Apriori algorithm for mining association rules[J]. Computer Technology and Development, 2006, 16(12):89-90. [3] 邵峰晶, 于忠清. 数据挖掘原理与算法[M]. 北京:中国水利水电出版社, 2003:123-135. [4] 刘以安, 羊斌. 关联规则挖掘中对Apriori算法的一种改进研究[J]. 计算机应用, 2007, 27(2):418-420. LIU Yian, YANG Bin. Research of an improved Apriori algorithm in mining association rules[J]. Computer Applications, 2007, 27(2):418-420. [5] 袁万莲, 郑诚, 翟明清. 一种改进的Apriori算法[J]. 计算机技术与发展, 2008,18(5):51-53. YUAN Wanlian, ZHENG Cheng, ZHAI Mingqing. An improved Apriori algorithm[J]. Computer Technology and Development, 2008, 18(5):51-53. [6] HAN Jiawei, PEI Jian, YIN Yiwen. Mining frequent patterns without candidate generation:a frequent-pattern tree approach[C]//Proceedings of International Conference on Data Mining and Knowledge Discovery. New York, USA:ACM, 2004:53-87. [7] 李志云,周国祥.一种基于MFP树的快速关联规则挖掘算法[J].计算机技术与发展,2007(6):94-100. LI Zhiyun, ZHOU Guoxiang. A fast association rule mining algorithm based on MFP tree[J]. Computer Technology and Development, 2007(6):94-100. [8] 徐前方,阔建杰,李永春,等.一种具有时序特征的告警关联规则挖掘算法[J].微电子学与计算机,2007(24):23-26. XU Qianfang, KUO Jianjie, LI Yongchum, et al. An algorithm for mining time-series alarm association rules[J]. Microelectronics and Computer, 2007(24):23-26. [9] 宋余庆,朱玉全,孙志辉,等.基于FP-Tree的最大频繁项目集挖掘及更新算法[J].软件学报,2003, 14(9):1586-1592. SONG Yuqing, ZHU Yuquan, SUN Zhihui, et al. An algorithm and its updating algorithm based on FP-Tree for mining maximum frequent itemsets[J]. Journal of Software, 2003, 14(9):1586-1592. [10] 冯霞,李娟娟,闫冠男. 关联规则挖掘在航空安全报告分析中的应用[J]. 计算机工程与设计, 2011, 32(1):218-220. FENG Xia, LI Juanjuan, YAN Guannan. Applications of association rules mining in aviation safety reports analysis[J]. Computer Engineering and Design, 2011, 32(1):218-220. [11] 钱冬云. 基于用户兴趣导向的关联规则数据挖掘[J]. 微计算机信息, 2007(21):207-209. QIAN Dongyun. Algorithms based user transmits of association rules in data mining[J]. Microcomputer Information, 2007(21):207-209. [12] 戴臻,费洪晓,谢文彪,等. 基于特定模式树的用户行为关联规则挖掘算法[J]. 计算机系统应用, 2007(5):56-59. DAI Zhen, FEI Hongxiao, XIE Wenbiao, et al. The algorithm of users behavior associate rules mining based on specific pattern tree[J]. Computer Systems Applications, 2007(5):56-59. [13] 宋江春,沈钧毅,宋擒豹. 一个基于关联规则的多层文档聚类算法[J].计算机应用, 2005, 25(7):1571-1572. SONG Jiangchun, SHEN Junyi, SONG Qinbao. Multi-level document clustering algorithm based on association rules[J]. Computer Applications, 2005, 25(7):1571-1572. [14] 曾利军,李泽军,柳佳刚. 基于矩阵加权关联规则的区间模糊C均值聚类[J]. 计算机工程, 2010, 36(22):52-54. ZENG Lijun, LI Zejun, LIU Jiagang. Inter borough fuzzy C-means clustering based on matrix-weighted association rules[J]. Computer Engineering, 2010, 36(22):52-54. [15] 苑森淼, 程晓青. 数量关联规则发现中的聚类方法研究[J],计算机学报, 2000, 23(8):866-871. YUAN Senmiao, CHENG Xiaoqing. Clustering method for mining quantitative association rules[J]. Chinese Journal of Computer, 2000, 23(8):866-871. [16] 周霆, 张伟, 张泽洪. 基于关联规则的映射聚类算法[J]. 微电子学与计算机, 2006, 23(3):26-33. ZHOU Ting, ZHANG Wei, ZHANG Zehong. Association rules-based projected clustering algorithm[J]. Microelectronics and Computer, 2006, 23(3):26-33. [17] 龙昊, 冯剑, 琳李曲. R-means:以关联规则为簇中心的文本聚类[J].计算机科学, 2005, 32(9):156-159. LONG Hao, FENG Jian, LIN Liqu. R-means:exploiting association rules as means for text clustering[J]. Computer Science, 2005, 32(9):156-159. [18] Lotfi Admane, Karima Benatchba, Mouloud Koudi, et al. AntPart:an algorithm for the unsupervised classification problem using ants[J].Applied Mathematics and Computation, 2006, 180(1):16-28. [19] DORIGO M, BONABEAU E, THERAULAZ G. Ant algorithms and stifmergy[J]. Future Generation Computer Systerns, 2000, 16(8):851-871. [20] LUMER E, FAIETA B. Diversity and adaptation in populations of clustering ants[C]//Proceedings of the Third International Conference on Simulation of Adaptive Behavior:From Animals to Animals. MA:MIT Press, 1994:499-508. [21] 吴斌,史忠植.一种基于蚁群算法的TSP问题分段求解算法[J].计算机学报, 2001(12):1328-1333. WU Bin, SHI Zhongzhi. An ant colony algorithm based partition algorithm for TSP[J]. Chinese Journal of Computers, 2001(12):1328-1333. [22] 沙露,鲍培明,李尼格.基于蚁群系统的聚类算法研究[J]. 山东大学学报:工学版, 2010(3):13-18. SHA Lu, BAO Peiming, LI Nige. Clustering algorithm based on ant colony system[J]. Journal of Shandong University: Engineering Science, 2010(3):13-18. [23] CAO Longbin, ZHANG Chengqi. Knowledge actionability:satisfying technical and business interestingness[J]. International Journal of Business Intelligence and Data Mining, 2007, 2(4):496-514. [24] CAO Longbin, ZHANG Chengqi. Domain-driven actionable knowledge discovery in the real world[C]//Proceedings of the 10th Pacific-Asi Conf. on Advances in Knowledge Discovery and Data mining (PAKDD 2006). Berlin Heidelberg:Springer, LNAI 3918, 2006:821-830. [25] CAO Longbing, ZHAO Yanchang, ZHANG Chengqi. Mining impact-targeted activity patterns in imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(8):1053-1066. |
[1] | 鲁松1,徐文春2,杨云2. 一种分环多跳的无线传感器网络分簇路由加权算法[J]. 山东大学学报(工学版), 2012, 42(4): 24-28. |
[2] | 蔡忠欣,张华忠 . 一种基于睡眠和网关选择机制的分簇协议[J]. 山东大学学报(工学版), 2008, 38(1): 56-60 . |
|