山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (1): 37-44.doi: 10.6040/j.issn.1672-3961.2.2014.048
项磊, 徐军
XIANG Lei, XU Jun
摘要: 提出一种基于方向梯度直方图(histograms of oriented gradient, HOG) 特征和滑动窗口的细胞检测方法,能快速、高效、准确地检测高分辨率病理组织图像中的细胞。该检测算法首先对训练集中的细胞样本块和非细胞样本块提取HOG特征,然后运用HOG特征训练分类器。训练好的分类器用于在整幅病理图像中自动检测细胞。先运用滑动窗的方法在整幅高分辨率病理图像中选取相同尺寸的所有可能的细胞块,被滑动窗选定的图像块提取HOG特征后,送到训练好的分类器中判断是否是细胞块。为了验证提出方法的有效性,将此方法运用于17名乳腺患者的共37张H&E(hematoxylin & eosin)染色高分辨率穿刺切片病理图像上自动检测细胞, 通过与softmax(SM)分类器、稀疏自编码器+SM、局部二值模式+SM、支持向量机(support vector machine, SVM)、HOG+SVM、以及 HOG+SVM 多个模型对细胞检测的准确率、召回率以及综合评价指标的对比表明,本研究提出的方法分别为71.5%,82.3%和76.5%,具有更高的准确率。
中图分类号:
[1] LERMAN C, TROCK B, RIMER B K, et al. Psychological side effects of breast cancer screening[J]. Health Psychology, 1991, 10(4):259. [2] FATAKDAWALA H, XU J, BASAVANHALLY A, et al. Expectation—maximization-driven geodesic active contour with overlap resolution (emagacor):application to lymphocyte segmentation on breast cancer histopathology[J]. Biomedical Engineering, IEEE Transactions on, 2010, 57(7):1676-1689. [3] MOUELHI A, SAYADI M, FNAIECH F, et al. Automatic image segmentation of nuclear stained breast tissue sections using color active contour model and an improved watershed method[J]. Biomedical Signal Processing and Control, 2013, 8(5):421-436. [4] XU J, JANOWCZYK A, CHANDRAN S, et al. A high-throughput active contour scheme for segmentation of histopathological imagery[J]. Medical Image Analysis, 2011, 15(6):851-862. [5] BASAVANHALLY A, XU J, MADABHUSHI A, et al. Computer-aided prognosis of ER+breast cancer histopathology and correlating survival outcome with oncotype DX assay[C]//Biomedical Imaging:From Nano to Macro. [S.l.]:IEEE, 2009:851-854. [6] GHAZNAVI F, EVANS A, MADABHUSHI A, et al. Digital imaging in pathology:whole-slide imaging and beyond[J]. Annual Review of Pathology:Mechanisms of Disease, 2013, 8:331-359. [7] CIREŞAN D C, GIUSTI A, GAMBARDELLA L M, et al. Mitosis detection in breast cancer histology images with deep neural networks[C]//Medical Image Computing and Computer-Assisted Intervention. Germany:Springer Berlin Heidelberg, 2013:411-418. [8] WOLBERG W H, STREET W N, MANGASARIAN O L. Machine learning techniques to diagnose breast cancer from image-processed nuclear features of fine needle aspirates[J]. Cancer Letters, 1994, 77(2):163-171. [9] BASAVANHALLY A N, GANESAN S, AGNER S, et al. Computerized image-based detection and grading of lymphocytic infiltration in HER2+breast cancer histopathology[J]. Biomedical Engineering, IEEE Transactions on, 2010, 57(3):642-653. [10] PETUSHI S, GARCIA F U, HABER M M, et al. Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer[J]. BMC Medical Imaging, 2006, 6(1):14. [11] DI Cataldo S, FICARRA E, ACQUAVIVA A, et al. Automated segmentation of tissue images for computerized IHC analysis[J]. Computer Methods and Programs in Biomedicine, 2010, 100(1):1-15. [12] DI Cataldo S, FICARRA E, ACQUAVIVA A, et al. Achieving the way for automated segmentation of nuclei in cancer tissue images through morphology-based approach:a quantitative evaluation[J]. Computerized Medical Imaging and Graphics, 2010, 34(6):453-461. [13] IRSHAD H, VEILLARD A, ROUX L, et al. Methods for nuclei detection, segmentation and classification in digital histopathology:a review [J].Current Status and Future Potential, 2013. [14] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition. [S.l.]:IEEE, 2005:886-893. [15] LAMPERT C H, BLASCHKO M B, HOFMANN T. Beyond sliding windows: object localization by efficient subwindow search[C]//Computer Vision and Pattern Recognition.[S.l.]:IEEE Conference on. IEEE, 2008:1-8. [16] BOSCH A, ZISSERMAN A, MUNOZ X. Representing shape with a spatial pyramid kernel[C]//Proceedings of the 6th ACM international conference on Image and video retrieval.[S.l.]:[S.n.], 2007:401-408. [17] OJALA T, PIETIKAINEN M, MAENPAA T, et al. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2002, 24(7):971-987. [18] LIENHART R, MAYDT J. An extended set of haar-like features for rapid object detection[C]//Image Processing.[S.l.]: IEEE, 2002. [19] VIOLA P, JONES M J, HU X. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57(2):137-154. [20] CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning methods[M]. London:Cambridge University Press, 2000:331-346. [21] BARINOVA O, LEMPITSKY V, KHOLI P. On detection of multiple object instances using hough transforms[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2012, 34(9):1773-1784. |
[1] | 王斌,常发亮,刘春生. 基于多特征融合的交通标志分类[J]. 山东大学学报(工学版), 2016, 46(4): 34-40. |
[2] | 朱全银1,严云洋1,周培1,谷天峰2. 一种线性插补与自适应滑动窗口价格预测模型[J]. 山东大学学报(工学版), 2012, 42(5): 53-58. |
[3] | 刘文亮,朱维红,陈涤,张泓泉. 基于雷达图像的运动目标形态检测及跟踪技术[J]. 山东大学学报(工学版), 2010, 40(3): 31-36. |
|