您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2011, Vol. 41 ›› Issue (2): 46-50.

• 机器学习与数据挖掘 • 上一篇    下一篇

基于颜色量化矩阵的SIFT特征描述方法

汤伯超,蔡念*,程昱   

  1. 广东工业大学信息工程学院, 广东 广州 510006
  • 收稿日期:2010-12-01 出版日期:2011-04-16 发布日期:2010-12-01
  • 通讯作者: 蔡念(1976- ),男,安徽马鞍山人,副研究员,博士后,主要研究方向为图像处理等.E-mail:cainian@gdut.edu.cn E-mail:cainian@gdut.edu.cn
  • 作者简介:汤伯超(1985- ),男,广东广州人,硕士研究生,主要研究方向是图像处理等.E-mail:tang.bochao@163.com
  • 基金资助:

    国家自然科学基金资助项目(61001179);广东省自然科学基金资助项目(07301038,9451009001002667)

A novel SIFT descriptor based on a color quantization matrix

TANG Bochao, CAI Nian*, CHENG Yu   

  1. Faculty   of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2010-12-01 Online:2011-04-16 Published:2010-12-01

摘要:

针对现有彩色图像的尺度不变特征转换(scale invariant feature transform, SIFT)算法计算复杂度较大和匹配性能较差的缺点,提出一种基于颜色量化矩阵的SIFT特征描述算法。首先由彩色图像的色调、饱和度和亮度生成颜色量化矩阵,然后由量化矩阵生成128维的SIFT特征描述子,最后应用于彩色目标匹配。实验结果表明,相比于现有彩色图像SIFT算法,本文方法具有匹配正确率高、匹配时间短和正确匹配点数多等优点,能够对彩色目标进行有效地匹配。

关键词: 颜色量化矩阵;尺度不变特征转换(SIFT), HSV颜色空间, 特征匹配

Abstract:

In order to avoid the disadvantages of huge computational complexity and poor matching performance in existing  scale invariant feature transform(SIFT) descriptors for color images,  a novel SIFT descriptor for color images based on color quantization matrix was given. The quantization matrix was obtained by triplecolor components. And it was applied to generate a 128dimensional SIFT descriptor to match color objects. The experimental results showed that, compared with existing SIFT descriptors for color images, this proposed method has the advantages of higher correct matching rate, less matching time and more accurate matching points. This method can effectively match the color objects.

Key words: color quantization matrix, scale invariant feature transform (SIFT), hue saturation value(HSV) color space, feature matching

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!