您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (6): 83-89.doi: 10.6040/j.issn.1672-3961.0.2024.080

• 能动工程——热管理专题 • 上一篇    

大型直冷式制冰机结冰过程的建模

王晓鹏1,张志强2,赵红霞1*,柏超1,程义广2,高晨晨3,李广鹏4   

  1. 1.山东大学核科学与能源动力工程学院, 山东 济南 250061;2.山东宝成制冷设备有限公司, 山东 聊城 252400;3.山东神舟制冷设备有限公司, 山东 济南 250220;4.山东商业职业技术学院冷链物流与供应链产业学院, 山东 济南 250103
  • 发布日期:2025-12-22
  • 作者简介:王晓鹏(2002— ),男,山东德州人,硕士研究生,主要研究方向为制冰机原理. E-mail: 202314526@mail.sdu.edu.cn. *通信作者简介:赵红霞(1977— ),女,山东郓城人,教授,硕士生导师,博士,主要研究方向为空调热泵、喷射器等. E-mail: hongxia.zhao@sdu.edu.cn
  • 基金资助:
    山东省科技型中小企业创新能力提升工程资助项目(2022TSGC2574)

Modeling on icing process of large direct cooling ice maker

WANG Xiaopeng1, ZHANG Zhiqiang2, ZHAO Hongxia1*, BAI Chao1, CHENG Yiguang2, GAO Chenchen3, LI Guangpeng4   

  1. WANG Xiaopeng1, ZHANG Zhiqiang2, ZHAO Hongxia1*, BAI Chao1, CHENG Yiguang2, GAO Chenchen3, LI Guangpeng4(1. School of Nuclear Science, Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. Shandong Baocheng Refrigeration Equipment Co., Ltd., Liaocheng 252400, Shandong, China;
    3. Shandong Shenzhou Refrigeration Equipment Co., Ltd., Jinan 250220, Shandong, China;
    4. Cold Chain Logistics and Supply Chain Industry College, Shandong Institute of Commerce and Technology, Jinan 250103, Shandong, China
  • Published:2025-12-22

摘要: 依据大型直冷式制冰机制冰单元的传热形式以及内部相态的改变,将制冰过程划分为水的对流换热降温过程、水的导热换热降温过程、水的冻结过程、冰的降温过程4个阶段。运用能量守恒方程和传热方程等,建立制冰全过程各单元的数学模型,通过MATLAB软件编程求解各阶段的时间。对大型直冷式制冰机制冰单元内的结冰过程进行了试验测定,经验证,传热模型各阶段的计算误差均在8.00%以内,总误差小于4.00%,模型准确性较高。对大型直冷式制冰机的设计优化提供技术指导和理论支持。

关键词: 直冷式制冰机, 传热过程, 数学模型, 制冰原理, 求解程序

Abstract: This study divided the ice making process into four stages based on the heat transfer form of the ice-making unit of the large direct-cooled ice maker and the change of internal phase state: the convective heat transfer cooling process of water, the conductive heat transfer cooling process of water, the freezing process of water, and the cooling process of ice. By using energy conservation equations and heat transfer equations, mathematical models of each unit in the whole ice-making process were established, and the time of each stage was solved by MATLAB software programming. In this study, the icing process in the ice making unit of a large direct-cooled ice maker was experimentally determined. It had been verified that the calculation errors of each stage of the heat transfer model were all within 8.00%, and the total error was less than 4.00%, which indicated the high accuracy of the model. This study provided technical guidance and theoretical support for the design optimization of a large direct-cooled ice maker.

Key words: direct cooling ice maker, heat transfer process, mathematical model, ice making principle, solution program

中图分类号: 

  • TB657.1
[1] 汪超, 韩美顺. 2019年度中国制冷设备市场分析[J]. 制冷技术, 2020, 40(增刊1): 68-89. WANG Chao, HAN Meishun. 2019 China refrigeration equipment market analysis[J]. Chinese Journal of Refrigeration Technology, 2020, 40(Suppl.1): 68-89.
[2] 韩美顺. 2020年度中国制冷设备市场分析[J]. 制冷技术, 2021, 41(增刊1): 67-86. HAN Meishun. Analysis on refrigeration equipment market of China in 2020[J]. Chinese Journal of Refrigeration Technology, 2021, 41(Suppl.1): 67-86.
[3] LIU Zhan, TAN Haihui. Thermal performance of ice-making machine with a multi-channel evaporator[J]. International Journal of Green Energy, 2019, 16(7):520-529.
[4] WANG Hong, FENG Rongzhen, DUAN Huanlin, et al. Investigation into the ice generator with double supercooled heat exchangers[J]. Applied Thermal Engineering, 2016, 98:380-386.
[5] RAMACHANDRA V D, PERRY H L, JOHN S L, et al. Measurement and numerical analysis of freezing in solutions enclosed in a small container[J]. International Journal of Heat and Mass Transfer, 2002, 45(9):1915-1931.
[6] GOU Yujun, QIN Yi, LI Jiachun, et al. Experimental investigation of the effect of stable magnetic field on droplet freezing[J]. Experimental Thermal and Fluid Science, 2024, 150: 111060.
[7] BERNO G M, KNABBEN F T, HERMES C J L. Modeling of the time evolution of the solidification front in ice cubes[J]. International Journal of Refrigeration, 2022,143: 37-42.
[8] 周全, 蔡松素, 孔晓鸣, 等. 家用制冰机结冰过程的建模研究[J]. 机电一体化, 2013, 19(11): 63-65. ZHOU Quan, CAI Songsu, KONG Xiaoming,et al. Modeling study on household ice-making process of ice-maker[J]. Mechatronics, 2013, 19(11): 63-65.
[9] 时竞竞, 刘道平, 余守杰, 等. 改进型真空制冰系统的性能研究[J]. 制冷学报, 2012, 33(1): 60-64. SHI Jingjing, LIU Daoping, YU Shoujie, et al. Performance study on improved vacuum ice slurry making equipment[J]. Journal of Refrigeration, 2012, 33(1): 60-64.
[10] 杜玉吉, 周长江, 丁为俊, 等. 制冰桶结构对制冰性能影响的数值模拟分析研究[J]. 建筑热能通风空调, 2021, 40(7): 6-9. DU Yuji, ZHOU Changjiang, DING Weijun, et al. Influence of ice bucket structure on ice making performance based on fluent[J]. Building Energy & Environment, 2021, 40(7): 6-9.
[11] 佘丽丽. 制冰桶结构形式对大型砖冰机制冰池盐水流场影响分析[J]. 时代农机, 2018, 45(10): 198-199.
[12] 陶文铨. 传热学[M]. 北京:高等教育出版社, 2019: 229-245.
[13] THEODORE L B, ADRIENNE S L, FRANK P I, et al. Introduction to heat transfer[M]. 6th ed. Hoboken: John Wily & Sons, 2011: 377-378.
[14] YUNUS A C, AFSHIN J G. Heat and mass transfer[M]. 4th ed. New York: McGraw-Hill, 2011: 436,441,489.
[15] 房贤仕, 李秋英, 陈杰, 等. 管内气液两相流换热关联式研究现状[J]. 东北电力大学学报, 2022, 42(1): 71-78. FANG Xianshi, LI Qiuying, CHEN Jie, et al. A review on heat transfer correlation of gas-liquid two-phase flow in tubes[J]. Journal of Northeast Electric Power University, 2022, 42(1): 71-78.
[16] XIN Rongceng, TAO Wenquan. Analytical solution for transient heat conduction in two-semi-infinite bodies in contact[J]. ASMEJ Heat Transfer, 1994, 116(1): 224-228.
[17] JACK P H. Heat transfer[M]. 10th ed. Boston: McGraw-Hill Higher Education, 2010: 350.
[18] YUNUS A C, AFSHIN J G. Heat transfer, a practical approach[M]. 4th ed. Boston: WCB McGraw-Hill, 2011: 228.
[19] 张洪济. 热传导[M]. 北京:高等教育出版社,1992:189-215, 217-224.
[1] 张磊,孙奉仲*,高明. 侧风对冷却塔性能影响的特异性定量分析方法[J]. 山东大学学报(工学版), 2013, 43(5): 98-103.
[2] 张飞,耿红琴. 基于混沌粒子群算法的车间作业调度优化[J]. 山东大学学报(工学版), 2013, 43(3): 19-22.
[3] 刘建华1,2, 黄添强2, 严晓明2. 融合PSO算法思想的进化算法[J]. 山东大学学报(工学版), 2010, 40(5): 34-40.
[4] 高坤华,张成义,胡亦工,徐士倩,郑冠军,王伟. 循环泵启动瞬间排水系统壅水数值模型分析[J]. 山东大学学报(工学版), 2010, 40(4): 138-143.
[5] 杜乾蔚 何彬 王玉玲 游智.
基于遗传算法的含金属混合炸药配方设计
[J]. 山东大学学报(工学版), 2009, 39(5): 149-152.
[6] 周守军 赵有恩 陈明九 田茂诚. 集中供热系统水力调节方法[J]. 山东大学学报(工学版), 2009, 39(3): 151-153.
[7] 王振树,马捍东,张波, . 基于MATLAB/SIMULINK的三相异步起动永磁同步电动机的建模与仿真[J]. 山东大学学报(工学版), 2006, 36(5): 35-39 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!