山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (4): 9-17.doi: 10.6040/j.issn.1672-3961.0.2024.170
• 深度学习与视觉专题 • 上一篇
索大翔,李波*
SUO Daxiang, LI Bo*
摘要: 针对光伏场站无人机巡检场景中,电池面板缺陷目标成像过小导致的漏检和误检问题,提出一种针对光伏电池板的高精度缺陷检测方法。根据无人机巡检中目标尺寸的分布特征,采用细粒度特征增强与尺寸匹配相结合的策略,提高光伏缺陷小目标检测精度。与传统样本数据增强、多尺度学习和特征增强等增强小目标策略不同,引入细节保留语义信息增强模块,在保留细粒度信息的同时,挖掘相关粗粒度语义细节。引入锚点-预测头匹配多尺度检测策略,确保锚点与特征图的尺寸匹配。本研究方法在PVEL-AD数据集上均值平均精度达到59.4%,在CARPK数据集上均值平均精度达到97.6%,对比主流目标检测模型,光伏缺陷目标检测性能显著提高。
中图分类号:
| [1] 白宇皓. 碳达峰, 碳中和背景下新能源发展趋势探讨[J].经济技术协作信息, 2021(35): 3. BAI Yuhao. Discussion on the development trend of new energy under the background of carbon peak and carbon neutrality[J]. Economic Technical Cooperation Infor-mation, 2021(35): 3. [2] 曹阳, 孟茁. 基于无人机光伏巡检的视频图像传输系统设计[J]. 计算机与网络, 2020, 46(15):62-65. CAO Yang, MENG Zhuo. Design on video image transmission system based on uav photovoltaic inspection[J]. Computer & Network, 2020, 46(15): 62-65. [3] 李香凡, 唐志伟, 胡家龙, 等. 无人机光伏巡检的图像目标检测算法[J]. 电子世界, 2020, 11: 7-8. LI Xaingfan, TANG Zhiwei, HU Jialong, et al. Image target detection algorithm for uav photovoltaic inspection[J]. Electronics World, 2020, 11: 7-8. [4] SU B, ZHOU Z, CHEN H. PVEL-AD: a large-scale open-world dataset for photovoltaic cell anomaly detection[J]. IEEE Transactions on Industrial Informatics, 2022, 19(1): 404-413. [5] 刘颖, 刘红燕, 范九伦, 等. 基于深度学习的小目标检测研究与应用综述[J]. 电子学报, 2020, 48(3): 590-601. LIU Ying, LIU Hongyan, FAN Jiulun, et al. A survey of research and application of small object detection based on deep learning[J]. Acta Electronica Sinica, 2020, 48(3): 590-601. [6] 刘洋, 战荫伟. 基于深度学习的小目标检测算法综述[J]. 计算机工程与应用, 2021, 57(2):37-48. LIU Yang, ZHAN Yinwei. Survey of small object detection algorithms based on deep learning[J]. Journal of Computer Engineering & Applications, 2021, 57(2):37-48. [7] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C] //Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Vancouver, Canada: IEEE, 2023: 7464-7475. [8] FADA J S, HOSSAIN M A, BRAID J L, et al. Electroluminescent image processing and cell degradation type classification via computer vision and statistical learning methodologies[C] // Proceedings of IEEE 44th Photovoltaic Specialist Conference(PVSC). Washington, D.C., USA: IEEE, 2017: 3456-3461. [9] KARIMI A M, FADA J S, HOSSAIN M A, et al. Automated pipeline for photovoltaic module electroluminescence image processing and degradation feature classification[J]. IEEE Journal of Photovoltaics, 2019, 9(5): 1324-1335. [10] DEITSCH S, CHRISTLEIN V, BERGER S, et al. Automatic classification of defective photovoltaic module cells in electroluminescence images[J]. Solar Energy, 2019, 185: 455-468. [11] SIMONYAN K, ZISSERMAN A. Very deep convol-utional networks for large-scale image recognition [EB/OL].(2015-04-10)[2024-07-15]. https://arxiv.org/abs/1409.1556 [12] BARTLER A, MAUCH L, YANG B, et al. Automated detection of solar cell defects with deep learning[C] //2018 26th European signal processing conference(EUSIPCO). Rome, Italy: IEEE, 2018: 2035-2039. [13] TANG W, YANG Q, XIONG K, et al. Deep learning based automatic defect identification of photovoltaic module using electroluminescence images[J]. Solar Energy, 2020, 201: 453-460. [14] AKRAM M W, LI G, JIN Y, et al. CNN based automatic detection of photovoltaic cell defects in electroluminescence images[J/OL]. Energy, 2019, 189: 116319 [2024-05-20]. https://doi.org/10.1016/j.energy.2019.116319 [15] CHEN X, KARIN T, JAIN A. Automated defect identification in electroluminescence images of solar modules[J]. Solar Energy, 2022, 242: 20-29. [16] FIORESI J, COLVIN D J, FROTA R, et al. Automated defect detection and localization in photovoltaic cells using semantic segmentation of electroluminescence images[J]. IEEE Journal of Photovoltaics, 2021, 12(1): 53-61. [17] SU B, CHEN H, CHEN P, et al. Deep learning-based solar-cell manufacturing defect detection with complementary attention network[J]. IEEE Transactions on Industrial informatics, 2020, 17(6): 4084-4095. [18] MEETHAL A, GRANGER E, PEDERSOLI M. Cascaded zoom-in detector for high resolution aerial images[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, Canada: IEEE, 2023: 2045-2054. [19] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii, USA: 2017: 2117-2125. [20] HONG M, LI S, YANG Y, et al. SSPNet: scale selection pyramid network for tiny person detection from uav images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5. [21] HE J Y, CHENG Z Q, LI C, et al. Damo-streamnet: optimizing streaming perception in autonomous driving[EB/OL].(2023-05-20)[2024-07-15].https://arxiv.org/abs/2303.17144 [22] DU B, HUANG Y, CHEN J, et al. Adaptive sparse convolutional networks with global context enhancement for faster object detection on drone images[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, Canada: IEEE, 2023: 13435-13444. [23] SUN Y, WANG S, CHEN C, et al. Boundary-guided camouflaged object detection[C] // Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence. Vienna, Austria: IJCAI, 2022: 1335-1341. [24] NOH J, BAE W, LEE W, et al. Better to follow, follow to be better: towards precise supervision of feature su-per-resolution for small object detection[C] //Proceedings of the IEEE/CVF International Conference on Computer Vision. California, USA: IEEE, 2019: 9725-9734. [25] LIANG J, ZENG H, ZHANG L. Details or artifacts: a locally discriminative learning approach to realistic image super-resolution[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE, 2022: 5657-5666. [26] XU C, WANG J, YANG W, et al. RFLA: gaussian receptive field based label assignment for tiny object detection[C] //European conference on computer vision. Cham, Switzerland: Springer, 2022: 526-543. [27] LEI T, SUN R, WANG X, et al. CiT-Net: convolutional neural networks hand in hand with vision transformers for medical image segmentation[C] //Proceedings of the 32th International Joint Conference on Artificial Intelligence. Macao, China: IJCAI, 2023: 1017-1025. [28] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL].(2016-04-30)[2024-07-15]. https://arxiv.org/abs/1511.07122 [29] OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning[C] //ICASSP 2023 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Rhodes, Greek: IEEE, 2023: 1-5. [30] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved yolov5 based on transformer prediction head for object detection on drone-captured scenarios[C] //Proceedings of the IEEE/CVF international conference on computer vision. Montreal, Canada: IEEE, 2021: 2778-2788. [31] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C] //Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2980-2988. [32] ZHENG Z, WANG P, LIU W, et al. Distance-iou loss: faster and better learning for bounding box regression[C] //Proceedings of the AAAI conference on artificial intelligence. New York, USA: AAAI Press, 2020, 34(7): 12993-13000. [33] NGUYEN D L, VO X T, PRIADANA A, et al. Car detector based on yolov5 for parking management[C] //Conference on Information Technology and its Applications. Cham, Switzerland: Springer, 2023: 102-113. [34] 周颖,颜毓泽,陈海永,等. 基于改进YOLOv8的光伏电池缺陷检测[J]. 激光与光电子学进展, 2024, 61(8): 1-17. ZHOU Ying, YAN Yuze, CHEN Haiyong, et al. Defect detection of photovoltaic cells based on improved yolov8[J]. Laser & Optoelectronics Progress, 2024, 61(8): 1-17. [35] ZHANG X, IZQUIERDO E, CHANDRAMOULI K. Dense and small object detection in uav vision based on cascade network[C] //Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. Seoul, IEEE, 2019: 118-126. [36] LI X, WANG W, WU L, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[J]. Advances in Neural Information Processing Systems, 2020, 33: 21002-21012. [37] YANG C, HUANG Z, WANG N. Querydet: cascaded sparse query for accelerating high-resolution small object detection[C] //Proceedings of the IEEE/CVF Con-ference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE, 2022: 13668-13677. |
| [1] | 陈晓燕,王川,齐明杰,张宁,林晓龙,霍延强,刘世杰,田源. 采用雷视融合方法的灌溉风险区异物入侵风险预警[J]. 山东大学学报 (工学版), 2024, 54(3): 115-121. |
| [2] | 索大翔,李波. 基于Gromov-Wasserstein最优传输的输电线路小目标检测方法[J]. 山东大学学报 (工学版), 2024, 54(3): 22-29. |
| [3] | 方昊,李云. 基于多次随机欠采样和POSS方法的软件缺陷检测[J]. 山东大学学报(工学版), 2017, 47(1): 15-21. |
| [4] | 梁玮1,2,陶亮3,张光先1,李振华1. 基于特征提取和极值搜索的焊接缺陷检测算法[J]. 山东大学学报(工学版), 2014, 44(3): 48-51. |
|
||