您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (2): 45-57.doi: 10.6040/j.issn.1672-3961.0.2024.113

• 电气工程——智慧能源专题(张恒旭教授主持) • 上一篇    下一篇

考虑用户满意度的智能建筑多目标能源优化

郑方圆1,陈立征1*,王文奎1,张汉元1,范英乐2   

  1. 1.山东建筑大学信息与电气工程学院, 山东 济南 250101;2.国网徐州供电公司, 江苏 徐州 221005
  • 发布日期:2025-04-15
  • 作者简介:郑方圆(2000— ),女,山东泰安人,硕士研究生,主要研究方向为能源优化. E-mail:z_fangy@163.com. *通信作者简介:陈立征(1989— ),男,山东泰安人,讲师,硕士生导师,博士,主要研究方向为系统稳定分析. E-mail:chenlizheng120@163.com
  • 基金资助:
    山东省自然科学基金青年基金资助项目(ZR2021QF066);山东省高等学校“青年创新团队科技计划”资助项目(2022KJ204)

Intelligent building energy optimization considering user satisfaction

ZHENG Fangyuan1, CHEN Lizheng1*, WANG Wenkui1, ZHANG Hanyuan1, FAN Yingle2   

  1. ZHENG Fangyuan1, CHEN Lizheng1*, WANG Wenkui1, ZHANG Hanyuan1, FAN Yingle2(1. School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China;
    2. State Grid Xuzhou Power Supply Company, Xuzhou 221005, Jiangsu, China
  • Published:2025-04-15

摘要: 为提高建筑节能,本研究构建低碳智能建筑能源优化系统。提出考虑用户满意度的智能建筑能源优化方法,搭建智能建筑能源优化系统模型,引入照明和空调负荷作为柔性负荷参与系统的优化调度,增加系统调度灵活性,此外电动汽车可与智能建筑双向交流,并且智能建筑可根据分时电价与公用电网进行电能双向传输。基于上述模型,以智能建筑日运行成本最小为目标,同时保证用户的满意度,构建由智能建筑运行成本和用户满意度构成的多目标优化问题,利用加权求和法处理多目标问题,然后通过CPLEX对系统模型优化求解。最后与多个不同的策略进行对比,本研究提出的策略可以保证用户满意度在0.95以上的前提下,降低系统运行成本。算例的对比结果证明,本研究提出的智能建筑能源优化方法可以实现智能建筑的节能减排并提高系统的经济性。

关键词: 用户满意度, 智能建筑, 柔性负荷, 能源优化, 加权求和法

Abstract: To improve building energy efficiency, a low-carbon intelligent building energy optimization system was constructed in this study. The energy optimization system model for intelligent building was constructed. lighting and air conditioning loads were considered as flexible loads to participate in the optimal scheduling of the system, which increased the flexibility of system scheduling. In addition, bidirectional interaction between electric vehicles and intelligent buildings was enabled, and electricity could be transmitted by intelligent buildings to the utility grid in two directions according to the time-of-use electricity price. Based on the above model, a multi-objective optimization problem composed of power generation cost and user satisfaction was constructed with the goal of minimizing operating cost and ensuring user satisfaction. The weighted sum method was used to deal with the multi-objective problem, and then the system model was optimized by CPLEX. Compared with several different strategies, the system operation cost can be reduced by the strategy proposed in this paper on the premise that the user satisfaction is ensured to be above 0.95. The comparison results of the numerical examples proved that the energy conservation and emission reduction in intelligent buildings could be achieved and the economy of the system could be improved by the intelligent building energy optimization method proposed in this study.

Key words: user satisfaction, intelligent building, flexible loads, energy optimization, weighted sum method

中图分类号: 

  • TM73
[1] QI X Y, HAN Y. Energy quota trading can achieve energy savings and emission reduction: evidence from China's pilots[J]. Environmental Science and Pollution Research, 2021, 28(37): 52431-52458.
[2] 张恒旭, 曹永吉, 张怡, 等. 电力系统频率动态行为衍变与分析方法需求综述[J]. 山东大学学报(工学版), 2021, 51(5): 42-52. ZHANG Hengxu, CAO Yongji, ZHANG Yi, et al. Review of frequency dynamic behavior evolution and analysis method requirements of power system[J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 42-52.
[3] 张恒旭, 高志民, 曹永吉, 等. 高比例可再生能源接入下电力系统惯量研究综述及展望[J]. 山东大学学报(工学版), 2022, 52(5): 1-13. ZHANG Hengxu, GAO Zhimin, CAO Yongji, et al. Review and prospect of research on power system inertia with high penetration of renewable energy source[J]. Journal of Shandong University(Engineering Science), 2022, 52(5): 1-13.
[4] LI C Z, ZHANG L M, LIANG X, et al. Advances in the research of building energy saving[J]. Energy and Buildings, 2022, 254: 111556.
[5] 颜湘武, 王庆澳, 卢俊达, 等. 计及电动汽车和柔性负荷的微电网能量调度[J]. 电力系统保护与控制, 2023, 51(17): 69-79. YAN Xiangwu, WANG Qing'ao, LU Junda, et al. Microgrid energy scheduling with electric vehicles and flexible loads[J]. Power System Protection and Control, 2023, 51(17): 69-79.
[6] 李文升, 刘晓明, 曹永吉, 等. 考虑电力系统灵活性的网-储联合规划[J]. 智慧电力, 2023, 51(4): 30-37. LI Wensheng, LIU Xiaoming, CAO Yongji, et al.Joint planning of energy storage and transmission line considering power system flexibility[J]. Smart Power, 2023, 51(4): 30-37.
[7] 陈宇星, 梁芙蓉, 尤炜, 等. 含分布式光伏的配电网模型预测控制优化方法[J]. 电力工程技术, 2023, 42(6): 100-109. CHEN Yuxing, LIANG Furong, YOU Wei, et al. Model predictive control optimization method for distribution network containing distributed photovoltaics[J]. Electric Power Engineering Technology, 2023, 42(6): 100-109.
[8] 孙东磊, 孙可奇, 杨金叶, 等. 考虑灵活性需求的电力系统优化调度[J]. 山东大学学报(工学版), 2022, 52(1): 120-127. SUN Donglei,SUN Keqi, YANG Jinye, et al. Power system optimal dispatch considering the requirements of flexibility[J]. Journal of Shandong University(Engineering Science), 2022, 52(1): 120-127.
[9] FOROOZANDEH Z, RAMOS S, SOARES J, et al. Goal programming approach for energy management of smart building[J]. IEEE Access, 2022, 10: 25341-25348.
[10] 李泽宁, 苏粟, 靳小龙, 等. 面向提高风电接纳能力的智慧建筑能量管理策略[J]. 电网技术, 2021, 45(6): 2288-2298. LI Zening, SU Su, JIN Xiaolong, et al. Energy management strategy of smart buildings for improving wind power accommodation ability[J]. Power System Technology, 2021, 45(6): 2288-2298.
[11] 胡鹏, 艾欣, 杨昭, 等. 考虑电能共享的综合能源楼宇群日前协同优化调度[J]. 电力自动化设备, 2019, 39(8): 239-245. HU Peng, AI Xin, YANG Zhao, et al. Day-ahead optimal scheduling for cluster building with integrated energy system considering power sharing[J]. Electric Power Automation Equipment, 2019, 39(8): 239-245.
[12] 潘帅琪, 魏繁荣, 林湘宁, 等. 光伏建筑一体化社区热电联供调度策略[J]. 电力系统保护与控制, 2022, 50(4): 24-35. PAN Shuaiqi, WEI Fanrong, LIN Xiangning, et al. Dispatch strategy of heat and power cogeneration in building integrated photovoltaic[J]. Power System Protection and Control, 2022, 50(4): 24-35.
[13] 王超, 潘麟, 刘博, 等. 新农村能源系统供用能特征分析与运行优化[J]. 山东大学学报(工学版), 2024, 54(3):149-159. WANG C, PAN L, LIU B, et al. Characteristic analysis and operational optimization of energy system in new rural areas[J]. Journal of Shandong University(Engineering Science), 2024, 54(3):149-159.
[14] 刘振, 孙媛媛, 李亚辉, 等. 基于用户行为预测的分布式光伏智能社区需求响应策略[J]. 山东大学学报(工学版), 2022, 52(5): 24-34. LIU Zhen, SUN Yuanyuan, LI Yahui, et al. Demand response strategy for distributed photovoltaic smart community based on model prediction of user behavior analysis[J]. Journal of Shandong University(Engineering Science), 2022, 52(5): 24-34.
[15] RAZMARA M, BHARATI G R, SHAHBAKHTI M, et al. Bilevel optimization framework for smart building-to-grid systems[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 582-593.
[16] HUSSAIN M S, ALI ABBAS KAZMI S, KHAN Z A, et al. Hierarchical energy management system with a local competitive power market for inter-connected multi-smart buildings[J]. IEEE Access, 2022, 10: 19493-19506.
[17] TOOPSHEKAN A, ABEDIAN A, AZIZI A, et al. Optimization of a CHP system using a forecasting dispatch and teaching-learning-based optimization algorithm[J]. Energy, 2023, 285:128671.
[18] KORKAS C D, TERZOPOULOS M, TSAKNAKIS C, et al. Nearly optimal demand side management for energy, thermal, EV and storage loads: an Approximate Dynamic Programming approach for smarter buildings[J]. Energy and Buildings, 2022, 255: 111676.
[19] 杨秀, 傅广努, 刘方, 等. 考虑多重因素的空调负荷聚合响应潜力评估及控制策略研究[J]. 电网技术, 2022, 46(2): 699-708. YANG Xiu, FU Guangnu, LIU Fang, et al. Potential evaluation and control strategy of air conditioning load aggregation response considering multiple factors[J]. Power System Technology, 2022, 46(2): 699-708.
[20] MOUSAVIZADE M, BAI F F, GARMABDARI R, et al. Adaptive control of V2Gs in islanded microgrids incorporating EV owner expectations[J]. Applied Energy, 2023, 341: 121118.
[21] 刘景余. LED照明负荷参与电力系统一次调频与备用优化配置研究[D]. 济南: 山东大学, 2018. LIU Jingyu. Research on LED lighting load participating in primary frequency modulation and standby optimal configuration of power system[D].Jinan: Shandong University, 2018.
[22] 孙毅, 张辰, 李泽坤, 等. 计及多区域用户差异化PMV的柔性负荷多功率级调控策略[J]. 中国电机工程学报, 2021, 41(22): 7574-7585. SUN Yi, ZHANG Chen, LI Zekun, et al. Flexible load multi-power level control strategy taking into account the differentiated PMV of multi-region users[J]. Proceedings of the CSEE, 2021, 41(22): 7574-7585.
[23] 中华人民共和国建设部. 夏热冬冷地区居住建筑节能设计标准: JGJ 134—2001[S]. 北京: 中国建筑工业出版社, 2004.
[24] MEHMOOD F, KHAN B, ALI S M. Renewable generation intermittence and economic dispatch control of autonomous microgrid with distributed sliding mode[J]. International Journal of Electrical Power and Energy Systems, 2021, 130:106937.
[25] SHI Y, WANG R, CHEN P F. Multi-criteria decision-making approach for energy-efficient renovation strategies in hospital wards: balancing energy, economic, and thermal comfort[J]. Energy and Buildings, 2023, 298: 113575.
[26] 陈丽娟, 秦萌, 顾少平, 等. 计及电池损耗的电动公交车参与V2G的优化调度策略[J]. 电力系统自动化, 2020, 44(11): 52-60. CHEN Lijuan, QIN Meng, GU Shaoping, et al. Optimal dispatching strategy of electric bus participating in vehicle-to-grid considering battery loss[J]. Automation of Electric Power Systems, 2020, 44(11): 52-60.
[1] 韩学山, 李克强. 适应新型电力系统发展的协同调度理论研究[J]. 山东大学学报 (工学版), 2022, 52(5): 14-23.
[2] 柴庆发,孙守晶,邱吉福,陈明,魏振,丛伟. 气象灾害条件下电网应急物资预测方法[J]. 山东大学学报 (工学版), 2021, 51(3): 76-83.
[3] 宋士瞻,陈浩宇,张健,王坤,郝庆水. 考虑路灯充电桩接入的城市配电网电压控制方法[J]. 山东大学学报 (工学版), 2020, 50(3): 104-110.
[4] 潘志远, 刘超男, 李宏伟, 王婧, 王威, 刘静, 郑鑫. 基于分时电价的含光伏的智慧家庭能量调度方法[J]. 山东大学学报 (工学版), 2020, 50(3): 111-116.
[5] 刘萌,程定一,张文,张恒旭,李宽,张国辉,苏建军. 中央空调紧急控制应对受端电网直流闭锁故障研究[J]. 山东大学学报 (工学版), 2020, 50(1): 72-81.
[6] 孙润稼,朱海南,刘玉田. 基于偏好多目标优化和遗传算法的输电网架重构[J]. 山东大学学报 (工学版), 2019, 49(5): 17-23.
[7] 刘玉田, 孙润稼, 王洪涛, 顾雪平. 人工智能在电力系统恢复中的应用综述[J]. 山东大学学报 (工学版), 2019, 49(5): 1-8.
[8] 王飞, 王春义, 王传勇, 赵光锋, 李沐, 施啸寒. 基于梯次利用电池储能系统的分布式光伏接入受限对策[J]. 山东大学学报 (工学版), 2018, 48(6): 109-115.
[9] 王飞,徐健,李伟,汪新浩,施啸寒. 基于分布式储能系统的风储滚动优化调度方法[J]. 山东大学学报(工学版), 2017, 47(6): 89-94.
[10] 王士柏,杜恒,武勇,刘洪正,程艳. 两级市场运行环境下微电网经济调度[J]. 山东大学学报(工学版), 2017, 47(6): 32-38.
[11] 马汉杰,林霞,胥晓晖,张健,张智晟. 基于自适应粒子群算法的智能家居管理系统负荷优化模型[J]. 山东大学学报(工学版), 2017, 47(6): 57-62.
[12] 刘晓明,许乃媛,杨斌,魏鑫,张丽娜,曹永吉. 全球能源互联网受端特高压网架双阶段优化[J]. 山东大学学报(工学版), 2017, 47(6): 1-6.
[13] 褚晓东,唐茂森,高旭,刘伟生,贾善杰,李笋. 基于集中式信息系统的主动配电网鲁棒优化调度[J]. 山东大学学报(工学版), 2017, 47(6): 20-25.
[14] 李建祥,车长明,韩元凯,陈芳,张程琳. 高速公路电动汽车应急充电救援方案综述[J]. 山东大学学报(工学版), 2017, 47(6): 121-127.
[15] 车长明,张华栋,李建祥,袁弘,刘海波. 需求侧规模化电动汽车的充电负荷优化调控策略[J]. 山东大学学报(工学版), 2017, 47(6): 108-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 玮,朱维红,高振明,许 峰 . FMT系统的频率同步算法[J]. 山东大学学报(工学版), 2007, 37(2): 72 -75 .
[2] 左俊彦, 张建国, 钟涛. 基于Canny检测的股骨边缘轮廓连接算法[J]. 山东大学学报(工学版), 2015, 45(3): 65 -72 .
[3] 左凯 孙同景 李振华. 基于康普顿散射的物体厚度测量方法[J]. 山东大学学报(工学版), 2009, 39(6): 68 -71 .
[4] 何东之, 张吉沣, 赵鹏飞. 不确定性传播算法的MapReduce并行化实现[J]. 山东大学学报(工学版), 0, (): 22 -28 .
[5] 顿月芹 闵越 袁建生. 阵列侧向测井正演响应的特性分析[J]. 山东大学学报(工学版), 2010, 40(1): 121 -125 .
[6] 林彦,魏东 . 铸钢空心球管节点的破坏机理分析与承载力影响因素[J]. 山东大学学报(工学版), 2006, 36(3): 103 -107 .
[7] 张新国1,许崇芳1*,王金双1,严纪丛1,韩廷武1,2. 无电感蔡氏电路设计方法与应用[J]. 山东大学学报(工学版), 2010, 40(6): 134 -138 .
[8] 陈文强1,林琛1,2,陈珂3,陈锦秀1,邹权1,2*. 基于GraphLab的分布式近邻传播聚类算法[J]. 山东大学学报(工学版), 2013, 43(5): 13 -18 .
[9] 周海龙,申向东,薛慧君. 小龄期水泥土无侧限抗压强度试验研究[J]. 山东大学学报(工学版), 2014, 44(1): 75 -79 .
[10] 郑桂兰,马庆雷,潘秀华 . 旧水泥混凝土路面沥青加铺层结构设计方法研究[J]. 山东大学学报(工学版), 2007, 37(4): 93 -97 .