山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (6): 176-181.doi: 10.6040/j.issn.1672-3961.0.2023.213
• 机械工程 • 上一篇
李旭1,杨斌1,刘昌斌1,牛军川2*
LI Xu1, YANG Bin1, LIU Changbin1, NIU Junchuan2*
摘要: 为充分考虑船舰等大型复杂隔振系统的基础和机器柔性、隔振器质量、隔振器布置形式等对振动传递的影响,克服传统建模方法不适用于大型复杂结构的建模和分析问题。分别将柔性的机器和基础视为形状不规则的板结构,隔振器用空间梁模拟,建立考虑机器、基础和隔振器柔性的隔振系统模型。将有限元方法引入隔振系统的振动计算,避免计算机器和基础机械导纳的复杂过程,给出柔性隔振系统的传递功率流表达式。将系统的振动传递进行可视化处理,得到结构的能量分布及功率流传递路径。
中图分类号:
[1] YANG T J, WU L, LI X H, et al. Combining active control and synchrophasing for vibration isolation of a floating raft system:an experimental demonstration[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2020: 1461348420933381. [2] 贾睿昊, 牛军川, 郭俊财. 舰用柴油机隔振系统建模及隔振效果评价[J]. 内燃机学报, 2023, 41(4): 376-383. JIA Ruihao, NIU Junchuan, GUO Juncai. Modeling and evaluation of vibration isolation system of ship diesel engine[J]. Transaction of CSICE, 2023, 41(4): 376-383. [3] WILSON W K. Vibration engineering[M]. London: Charles Griffin & Company Ltd., 1959. [4] SNOWDON J C. Transverse vibration of simply clamped beams[J]. Journal of the Acoustical Society of America, 1963, 35(8): 1579-1599. [5] SNOWDON J C. Approximate expressions for the mechanical impedance and transmissibility of beams vibrating in their transverse modes[J]. Journal of the Acoustical Society of America, 1964, 36(2): 366-375. [6] 楼京俊, 李超博, 夏江敏,等. 柔性隔振系统功率流传递特性研究[J]. 船舶工程, 2016, 38(7): 31-34. LOU Jingjun, LI Chaobo, XIA Jiangmin, et al. Research on power flow transmission characteristics of flexible isolation system[J]. Ship Engineering, 2016, 38(7): 31-34. [7] 黄伍德,车驰东,陈光冶. 考虑基础柔性的隔振系统功率流特性分析[J]. 舰船科学技术, 2016, 38(6): 70-74. HUANG Wude, CHE Chidong, CHEN Guangye. Study on power flow characteristics of isolation system based on flexible foundation[J]. Ship Science and Technology, 2016, 38(6): 70-74. [8] 郑迁, 吕志强, 帅长庚,等. 弹性基础上单层隔振系统功率流传递特性研究[J]. 舰船科学技术, 2017, 39(5): 64-68. ZHENG Qian, LÜ Zhiqiang, SHUAI Changgeng, et al. Research on transmission characteristics of power flow in single stage vibration isolation system on flexible base[J]. Ship Science and Technology, 2017, 39(5): 64-68. [9] NIU J C, SONG K J, HUO R, et al. Study on strategies of active vibration isolation in the coupling flexible system[J]. Chinese Journal of Mechanical Engineering, 2001, 37(12): 27-29. [10] NIU J C, SONG K J. Transmission characteristics of fully flexible isolation systems subjected to multi-excitations and supported by multi-mounts [J]. Journal of Mechanical Engineering, 2011, 47(7): 59-64. [11] NIU J C, LIM C W, ZHU J Q. Active control of flexible vibration systems with inclined combined mounts[J]. Advances in Vibration Engineering, 2011: 10(3): 239-249. [12] PINNINGTON R J, WHITE R G. Power flow through machine isolators to resonant and non-resonant beams [J]. Journal of Sound & Vibration, 1981, 75(2): 179-197. [13] PINNINGTON R J. Vibrational power transmission from a finite source beam to an infinite receiver beam via a continuous complaint mount[J]. Journal of Sound & Vibration, 1990, 137(1): 117-129. [14] SHI D, KONG L, SHI X, et al. Power flow analysis of vibration isolation system with admittance theory[J]. Journal of Harbin Engineering University, 2013, 34(6): 748-752. [15] 孔祥军, 陈长征, 费朝阳, 等. 基于功率流的双层隔振系统参数研究[J]. 机械设计与制造, 2013(4): 208-210. KONG Xiangjun, CHEN Changzheng, FEI Chaoyang, et al. Research on vibration parameters of double-deck isolation system based on power flow[J]. Machinery Design & Manufacture, 2013(4): 208-210. [16] 乔志. 基于有限元功率流的基座振动传递特性研究[D]. 武汉: 华中科技大学, 2013. QIAO Zhi. Research the vibration transmission characteristic of foundation based on FEM power flow[D]. Wuhan: Huazhong University of Science and Techn-ology, 2013. [17] 刘知辉, 牛军川, 周一群. 基于功率流有限元方法的异形薄板能量密度求解[J]. 振动与冲击, 2017, 36(16): 188-194. LIU Zhihui, NIU Junchuan, ZHOU Yiqun. Energy density analysis of irregular shaped plates based on the power flow finite element method[J]. Journal of Vibration and Shock, 2017, 36(16): 188-194. [18] 汤又衡. 全柔性隔振系统的有限元功率流计算及传递特性研究[D]. 济南: 山东大学, 2019. TANG Youheng. Study on finite element power flow calculation and transfer characteristics of fully flexible isolation system[D]. Jinan: Shandong University, 2019. [19] 汤又衡, 牛军川. 全柔性隔振系统功率流的有限元计算及其传递特性研究[J]. 噪声与振动控制, 2019, 39(6): 44-48. TANG Youheng, NIU Junchuan. Finite element calculation and transfer characteristics analysis of power flow for fully flexible isolation systems[J]. Noise and Vibration Control, 2019, 39(6): 44-48. [20] GAVRIC L, PAVIC G. A finite element method for computation of structural intensity by the normal mode approach[J]. Journal of Sound & Vibration, 1993, 164(1): 29-43. |
[1] | 田轶群,林荣恒. 基于知识图谱的查询显示系统的设计与实现[J]. 山东大学学报 (工学版), 2022, 52(2): 67-73. |
[2] | 耿麒,张俊杰,汪珂,路宇峰,谢立扬,叶敏. 基于FEM-SPH耦合的TBM滚刀切削仿真与试验研究[J]. 山东大学学报 (工学版), 2022, 52(1): 93-102. |
[3] | 陈馨菂, 李天瑞, 杨欢欢. 基于时间序列数据的交互式主题河流可视化[J]. 山东大学学报 (工学版), 2019, 49(4): 29-35. |
[4] | 赵鹏程, 张福全, 杨绪兵, 吴寅. 基于可视化的森林火灾监测节点优化部署策略[J]. 山东大学学报 (工学版), 2019, 49(1): 30-35. |
[5] | 吴恩启1,杜宝江1,王海鹏1,余建平2. 基于虚拟现实的地下电力管线可视化规划研究[J]. 山东大学学报(工学版), 2010, 40(6): 54-57. |
[6] | 吕国仁,闫书明,白书锋,贾 宁,马 亮 . 高速公路新型波形梁护栏端头实车碰撞性能研究[J]. 山东大学学报(工学版), 2008, 38(4): 47-52 . |
|