您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (3): 149-159.doi: 10.6040/j.issn.1672-3961.0.2023.091

• 电气工程 • 上一篇    

新农村能源系统供用能特征分析与运行优化

王超1,2,潘麟1,刘博1,李申伟1,马蕾娜1,陈建泽1,何斯强2*   

  1. 1.国网山东省电力公司青岛供电公司, 山东 青岛 266002;2.电网智能化调度与控制教育部重点实验室(山东大学), 山东 济南 250061
  • 发布日期:2024-06-28
  • 作者简介:王超(1981— ),男,山东新泰人,工程师,博士,主要研究方向为电力系统及其自动化. E-mail:wangchao2116@163.com. *通信作者简介:何斯强(1999— ),男,内蒙古呼伦贝尔人,硕士研究生,主要研究方向为电力系统及其自动化. E-mail:202234700@mail.sdu.edu.cn
  • 基金资助:
    国家电网有限公司科技资助项目(2021A-008)

Characteristic analysis and operational optimization of energy system in new rural areas

WANG Chao1,2, PAN Lin1, LIU Bo1, LI Shenwei1, MA Leina1, CHEN Jianze1, HE Siqiang2*   

  1. 1. Qingdao Power Supply Company of State Grid Shandong Electric Power Company, Qingdao 266002, Shandong, China;
    2. Key Laboratory Power System Intelligent Dispatch and Control, Ministry of Education(Shandong University), Jinan 250061, Shandong, China
  • Published:2024-06-28

摘要: 为促进农村能源系统对分布式能源的高效消纳,在供用能特征及可调潜力分析基础上,提出一种考虑各类可调资源运行特性的新农村能源系统运行优化方法,可在满足各类用能需求的同时促进分布式能源消纳。梳理各类用能负荷典型曲线及时变特征,分析其与分布式能源的协同配合潜力;考虑各类能量转换设备物理特性,建立状态转移模型及运行边界,以用能成本最低为目标建立能源系统运行优化模型;通过同类负荷聚合简化模型降低计算难度,基于Yalmip+CPLEX工具求解得到运行优化方案;以典型新农村能源系统为例验证所提方法效果。算例分析表明,所提方法可充分利用温控负荷、电转气负荷及电储能等可调资源促进分布式光伏消纳,相比基于规则的运行方式,弃光量降低约58%,用能成本降低约19%。

关键词: 新农村能源系统, 供用能特征分析, 运行优化, 农村振兴, 光伏消纳

中图分类号: 

  • TM761
[1] 欧迎红. 农村振兴战略视域下农村生态文明建设路径[J]. 农家参谋, 2022(10): 10-12. OU Yinghong. The path of rural ecological civilization construction in the perspective of rural revitalization strategy[J]. The Farmers Consultant, 2022(10): 10-12.
[2] 韩艳素. 新能源在农村振兴中的应用及发展探析[J]. 现代农业科技, 2021(5): 185-187. HAN Yansu. Exploring the application and development of new energy in rural revitalization[J]. Modern Agricultural Science and Technology, 2021(5): 185-187.
[3] 冯凯辉, 李琼慧, 黄碧斌, 等. 中国农村能源发展关键问题[J]. 中国电力, 2022, 55(6): 1-8. FEND Kaihui, LI Qionghui, HUANG Bibin, et al. Key issues on rural energy development in China[J]. Electric Power, 2022, 55(6): 1-8.
[4] 刘卫东, 李民, 赵冠, 等. 以农村能源互联网建设为引领的农村电气化提升工程实践研究[J]. 农电管理, 2020(12): 41-43. LIU Weidong, LI Min, ZHAO Guan, et al. Study on rural electrification enhancement project led by rural energy internet construction in practice[J]. Rural Power Management, 2020(12): 41-43.
[5] 周灿煌, 郑杰辉, 荆朝霞, 等. 面向园区微网的综合能源系统多目标优化设计[J]. 电网技术, 2018, 42(6): 1687-1697. ZHOU Canhuang, ZHENG Jiehui, JING Zhaoxia, et al. Multi-objective optimal design of integrated energy system for park-level microgrid[J]. Power System Technology, 2018, 42(6): 1687-1697.
[6] 李正茂, 张峰, 梁军, 等. 含电热联合系统的微电网运行优化[J]. 中国电机工程学报, 2015, 35(14): 3569-3576. LI Zhengmao, ZHANG Feng, LIANG Jun, et al. Optimization on microgrid with combined heat and power system[J]. Proceedings of the CSEE, 2015, 35(14): 3569-3576.
[7] 侯媛媛, 曾君, 罗燕, 等. 社区微网主动能量管理协同与优化方法研究[J]. 电网技术, 2023, 47(4): 1548-1557. HOU Yuanyuan, ZENG Jun, LUO Yan, et al. Research on collaborative and optimization methods of active energy management in community microgrid[J]. Power System Technology, 2023, 47(4): 1548-1557.
[8] MOHY-UD-DIN G, VU D, MUTTAQI K, et al. An integrated energy management approach for the economic operation of industrial microgrids under uncertainty of renewable energy[J]. IEEE Transactions on Industry Applications, 2020, 56(2): 1062-1073.
[9] KHAN M, ASAR A, ULLAH N, et al. Modeling and optimization of smart building energy management system considering both electrical and thermal load[J]. Energies, 2022, 15(2): 574.
[10] 杨桂兴, 王维庆, 姚红雨, 等. 面向广域分布的家庭蓄热式电采暖集群控制方法[J]. 电力自动化设备, 2023, 43(8): 56-62. YANG Guixing, WANG Weiqing, YAO Hongyu, et al. Control method of wide-area distributed household regenerative electric heating clusters[J]. Electric Power Automation Equipment, 2023, 43(8): 56-62.
[11] 麻恒远, 马恒瑞. 考虑新能源消纳的网-站-车协同优化调度[J]. 电网与清洁能源, 2023, 39(3): 103-108. MA Hengyuan, MA Hengrui. Grid-station-vehicle cooperative optimal scheduling considering new energy consumption[J]. Power System and Clean Energy, 2023, 39(3): 103-108.
[12] 张儒峰, 姜涛, 李国庆, 等. 考虑电转气消纳风电的电-气综合能源系统双层优化调度[J]. 中国电机工程学报, 2018, 38(19): 5668-5678. ZHANG Rufeng, JIANG Tao, LI Guoqing, et al. Bi-level optimization dispatch of integrated electricity-natural gas systems considering P2G for wind power accommodation[J]. Proceedings of the CSEE, 2018, 38(19): 5668-5678.
[13] 李媛媛, 牛叔文, 李真, 等. 我国农村家庭电力消费特征分析研究[J]. 中国能源, 2021, 43(4): 67-74. LI Yuanyuan, NIU Shuwen, LI Zhen, et al. Research on the characteristics of electricity consumption of rural households in China[J]. Energy of China, 2021, 43(4): 67-74.
[14] PAIGE J, COLIN M, DANIEL S, et al. Electrification futures study: end-use electric technology cost and performance projections through 2050[R]. Golden, USA: Electrification Futures Study, 2017.
[15] 姜鑫. 区域综合能源系统供需预测研究[D]. 西安: 西安科技大学, 2020. JIANG Xin. Research on energy supply-demand forecast of local-area integrated system[D]. Xi'an: Xi'an University of Science and Technology, 2020.
[16] HEITKOETTER W, SCHYSKA B, SCHMIDT D, et al. Assessment of the regionalised demand response potential in Germany using an open source tool and dataset[J]. Advances in Applied Energy, 2021, 1: 100001.
[17] SHI Q, LI F, LIU G, et al. Thermostatic load control for system frequency regulation considering daily demand profile and progressive recovery[J]. IEEE Transactions on Smart Grid, 2019, 10(6): 6259-6271.
[18] SCHIEBAHN S, GRUBE T, ROBINIUS M, et al. Power to gas: technological overview, systems analysis and economic assessment for a case study in Germany[J]. International Journal of Hydrogen Energy, 2015, 40(12): 4285-4294.
[19] 宋鹏飞, 侯建国, 姚辉超, 等. 电制气技术为电网提供大规模储能的构想[J]. 现代化工, 2016, 36(11): 1-6. SONG Pengfei, HOU Jianguo, YAO Huichao, et al. The idea of providing large scale energy storage for power grid by PtG process[J]. Modern Chemical Industry, 2016, 36(11): 1-6.
[20] International Energy Agency. The future of hydrogen[R]. Paris, French: International Energy Agency, 2019.
[21] CHEN S, CONEJO A, WEI Z. Gas-power coordination: from day-ahead scheduling to actual operation[J]. IEEE Transactions on Power Systems, 2022, 37(2): 1532-1542.
[22] 王延斌, 门军辉. “氢进万家”从蓝图走进现实[N]. 科技日报, 2022-05-31(6).
[23] LI Y, NIU P, SU Z. Design of greenhouse monitoring and control system based on LED lighting[C] //2015 12th China International Forum on Solid State Lighting(SSLCHINA). Shenzhen, China: IEEE, 2015: 123-126.
[24] 李亚平, 姚建国, 雍太有, 等. 居民温控负荷聚合功率及响应潜力评估方法研究[J]. 中国电机工程学报, 2017, 37(19): 5519-5528. LI Yaping, YAO Jianguo, YONG Taiyou, et al. Estimation approach to aggregated power and response potential of residential thermostatically controlled loads[J]. Proceedings of the CSEE, 2017, 37(19): 5519-5528.
[25] 李力, 董密, 宋冬然, 等. 分布式的温控负荷集群负荷跟随控制[J/OL]. 中国电机工程学报.(2022-12-16)[2023-5-30]. http://kns.cnki.net/kcms/detail/11.2107.TM.20221215.1555.003.html.
[1] 陈继明,孙名妤,游聚娟,康忠健. 基于子空间细菌群体趋药性算法的含分布式电源的配电网无功优化[J]. 山东大学学报(工学版), 2014, 44(2): 49-54.
[2] 叶华,张宁,刘玉田,牛新生 . STATCOM自定义建模及动稳态调压分析[J]. 山东大学学报(工学版), 2007, 37(5): 73-77 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!