您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (5): 29-36.doi: 10.6040/j.issn.1672-3961.0.2022.073

• 机器学习与数据挖掘 • 上一篇    

交通流量预测的时间异质性图注意力网络

陈雷1,2,3,赵耀帅3,4,*,林彦1,2,郭晟楠1,2,万怀宇1,2,林友芳1,2   

  1. 1. 北京交通大学计算机与信息技术学院, 北京100044;2. 北京交通大学交通数据分析与挖掘北京市重点实验室, 北京 100044;3. 民航旅客服务智能化应用技术重点实验室, 北京 101318;4. 中国民航信息网络股份有限公司, 北京 101318
  • 发布日期:2023-10-19
  • 作者简介:陈雷(1998— ),男,山东济宁人,硕士研究生,主要研究方向为时空数据挖掘和深度学习. E-mail: 2424556283@qq.com. *通信作者简介:赵耀帅(1977— ),男,山东济宁人,高级工程师,硕士,主要研究方向为人工智能及大数据. E-mail: yszhao@travelsky.com
  • 基金资助:
    中央高校基本科研业务费项目(2019JBM024)

Time heterogeneous graph attention network for traffic flow prediction

CHEN Lei1,2,3, ZHAO Yaoshuai3,4,*, LIN Yan1,2, GUO Shengnan1,2, WAN Huaiyu1,2, LIN Youfang1,2   

  1. 1. School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China;
    2. Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing 100044, China;
    3. Key Laboratory of Intelligent Passenger Service of Civil Aviation, Beijing 101318, China;
    4. Travelsky Technology Limited, Beijing 101318, China
  • Published:2023-10-19

摘要: 采用注意力模型研究交通流量预测问题,提出并设计一种基于时间异质性结合噪声滤除的交通流量预测方法,有效预测美国加州高速公路未来1 h的交通流量。在构建预测方案过程中,分析交通流量数据特性,分别针对相对时间间隔和绝对时间进行建模,挖掘时间异质性;使用基于节点固有属性的动态噪声滤除方法,解决空间中噪声干扰问题;对预测模型的工作性能和结果进行详细分析,并结合基线模型进行对比评价。试验结果表明,挖掘时间异质性并动态滤除噪声的改进注意力机制预测模型具有一定的预测精度。

关键词: 交通流预测, 时空依赖性, 注意力网络, 图神经网络, 门控机制

中图分类号: 

  • TP391
[1] VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J C. Short-term traffic forecasting: where we are and where were going[J]. Transportation Research Part C: Emerging Technologies, 2014, 43: 3-19.
[2] LAENGKVIST M, KARLSSON L, LOUTIFI A. A review of unsupervised feature learning and deep learning for time-series modeling[J]. Pattern Recognition Letters, 2014, 42(1):11-24.
[3] TEDJOPURNOMO D A, BAO Z, ZHENG B, et al. A survey on modern deep neural network for traffic prediction: trends, methods and challenges[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 14(8):1-20.
[4] WILLIAMS B M, HOEL L A. Modeling and forecasting vehicular traffic flow as a seasonal arima process: theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129(6):664-672.
[5] CHROBOK R, WAHLE J, SCHRECKENBERG M. Traffic forecast using simulations of large scale networks[C] // Proceedings of 2001 IEEE Intelligent Transportation Systems(ITSC). Oakland, USA: IEEE, 2001: 434-439.
[6] CASTRO-NETO M, JEONG Y S, JEONG M K, et al. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions[J]. Expert Systems with Applications, 2009, 36(3): 6164-6173.
[7] SCHMIDHUBER J. Deep learning in neural networks: an overview[J]. Neural Networks, 2015, 61: 85-117.
[8] 余凯,贾磊,陈雨强,等. 深度学习的昨天、今天和明天[J]. 计算机研究与发展,2013,50(9): 1799-1804. YU Kai, JIA Lei, CHEN Yuqiang, et al. Deep learning: yesterday, today, and tomorrow[J]. Journal of Computer Research and Development, 2013, 50(9): 1799-1804.
[9] 刘知远,孙茂松,林衍凯,等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(2): 247-261. LIU Zhiyuan, SUN Maosong, LIN Yankai, et al. Knowledge representation learning: a review[J]. Journal of Computer Research and Development, 2016, 53(2): 247-261.
[10] KUMAR S V, VANAJAKSHI L. Short-term traffic flow prediction using seasonal arima model with limited input data[J]. European Transport Research Review, 2015, 7(3):1-9.
[11] JEONG Y S, BYON Y J, CASTRO-NETO M M, et al. Supervised weighting-online learning algorithm for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4):1700-1707.
[12] GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C] //Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Honolulu, USA: AAAI Press, 2019:922-929.
[13] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] //Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc., 2017: 6000-6010.
[14] ZHENG C, FAN X, WANG C, et al. Gman: a graph multi-attention network for traffic prediction[C] //Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York, USA: AAAI Press, 2020:1234-1241.
[15] ZHANG J, ZHENG Y, QI D. Deep spatio-temporal residual networks for citywide crowd flows prediction[C] //Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, USA: AAAI Press, 2017:1655-1661.
[16] YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C] //Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden: AAAI Press, 2018:3634-3640.
[17] GENG X, LI Y, WANG L, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[C] //Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Honolulu, USA: AAAI Press, 2019:3656-3663.
[18] WU Z, PAN S, LONG G, et al. Graph wavenet for deep spatial-temporal graph modeling[C] //Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao, China: AAAI Press, 2019:1907-1913.
[19] LIN H, BAI R, JIA W, et al. Preserving dynamic attention for long-term spatial-temporal prediction[C] //Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: Association for Computing Machinery, 2020:36-46.
[20] TANG J, QU M, WANG M, et al. Line: large-scale information network embedding[C] //Proceedings of the 24th International Conference on World Wide Web. Florence, Italy: Association for Computing Machinery, 2015: 1067-1077.
[21] KE G, HE D, LIU T. Rethinking the positional encoding in language pre-training[EB/OL].(2020-01-28)[2021-03-01]. https://arxiv.org/abs/2006.15595.
[22] XU D, RUAN C, KORPEOGLU E, et al. Inductive representation learning on temporal graphs[EB/OL].(2020-02-19)[2021-03-01]. https://arxiv.org/abs/2002.07962.
[23] LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[EB/OL].(2017-07-06)[2021-03-01]. https://arxiv.org/abs/1707.01926.
[24] SONG C, LIN Y, GUO S, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[C] //Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York, USA: AAAI Press, 2020: 914-921.
[25] BAI L, YAO L, LI C, et al. Adaptive graph convolutional recurrent network for traffic forecasting[C] //Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, USA: Curran Associates Inc., 2020: 17804-17815.
[26] LI M, ZHU Z. Spatial-temporal fusion graph neural networks for traffic flow forecasting[C] //Proceedings of the 35th AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI Press, 2021: 4189-4196.
[1] 刘方旭,王建,魏本征. 基于多空间注意力的小儿肺炎辅助诊断算法[J]. 山东大学学报 (工学版), 2023, 53(2): 135-142.
[2] 杨霄,袭肖明,李维翠,杨璐. 基于层次化双重注意力网络的乳腺多模态图像分类[J]. 山东大学学报 (工学版), 2022, 52(3): 34-41.
[3] 李婧瑜,李歧强,侯海燕,杨立才 . 基于遗传算法的小波神经网络交通流预测[J]. 山东大学学报(工学版), 2007, 37(2): 109-112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!