山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (4): 56-64.doi: 10.6040/j.issn.1672-3961.0.2023.014
• 交通工程——智慧交通专题 • 上一篇
何永明1,权聪1,魏堃2*,冯佳1,万亚楠1,陈世升1
HE Yongming1, QUAN Cong1, WEI Kun2*, FENG Jia1, WAN Yanan1, CHEN Shisheng1
摘要: 为保障超高速公路行车安全,提高超高速公路车辆定位系统精度,对基于车路协同的超高速公路虚拟轨道系统车辆坐标转换进行研究。利用PreScan建立超高速公路虚拟轨道系统车辆坐标转换模型,研究车辆坐标转换方法的可行性。通过模型分析数学建模坐标转换方法和欧拉角坐标转换方法的不同,设置障碍物验证坐标转换方法的实用性和精确性。研究结果表明,欧拉旋转矩阵可以通过车辆横摆角、俯仰角和侧倾角的变化,实时显示障碍物在车辆坐标系下位置信息,进而保证超高速公路车辆坐标系的准确性,提高车辆定位系统精确度,验证欧拉坐标转换方法在超高速公路上的实用性和有效性。
中图分类号:
[1] 何永明, 裴玉龙. 超高速公路发展可行性论证与必要性研究[J]. 公路, 2016, 61(1): 158-162. HE Yongming, PEl Yulong. Feasibility demonstration and necessity analysis on superhighway[J]. Highway, 2016, 61(1): 158-162. [2] 何永明, 裴玉龙. 基于出行费用的超高速公路经济性评价[J]. 公路, 2018, 63(1): 117-123. HE Yongming, PEl Yulong. Economic evaluation of superhighway based on travel cost[J]. Highway, 2018, 63(1): 117-123. [3] 何永明, 裴玉龙, 冉斌. 基于智能路钮的超高速公路虚拟轨道系统研究[J]. 交通运输系统工程与信息, 2020, 20(2): 55-60. HE Yongming, PEl Yulong, RAN Bin. Superhighway virtual track system based on intelligent road button[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 55-60. [4] HE Y M, KANG J, PEI Y L, et al. Research on influencing factors of fuel consumption on superhighway based on DEMATEL-ISM model[J]. Energy Policy, 2021, 158: 112545. [5] 何永明, 裴玉龙. 超高速公路行驶燃油消耗预测研究[J]. 昆明理工大学学报(自然科学版), 2020, 45(2): 151-160. HE Yongming, PEl Yulong. A research on fuel consumption prediction when vehicles run on superhighway[J]. Journal of Kunming University of Science and Technology(Natural Science), 2020, 45(2): 151-160. [6] 付辰辰, 姚丹, 杨益, 等. 虚拟轨道列车侧墙结构声学优化设计[J]. 中南大学学报(自然科学版), 2022, 53(10): 4197-4205. FU Chenchen, YAO Dan, YANG Yi, et al. Acoustic optimization and design of sidewall structures of virtual rail trains[J]. Journal of Central South University(Science and Technology), 2022, 53(10): 4197-4205. [7] 何永明. 超高速公路安全保障与经济评价研究[D]. 哈尔滨: 东北林业大学, 2017. HE Yongming. Research on safety support and economy evaluation of superhighway[D]. Harbin: Northeast Forestry University, 2017. [8] 何永明, 陈世升, 冯佳, 等. 基于高精地图的超高速公路虚拟轨道系统[J/OL]. 吉林大学学报(工学版).(2022-02-15)[2023-03-24]. https://kns.cnki.net/kcms/detail/22.1341.T.20220215.0926.001.html. [9] 何永明, 冯佳, 权聪, 等. 超高速公路圆曲线加宽设计理论与应用研究[J]. 公路, 2022, 67(8): 44-49. HE Yongming, FENG Jia, QUAN Cong, et al. Research on design theory and application of circular curve widening for superhighway[J]. Highway, 2022, 67(8): 44-49. [10] HE Y M, SONG Y T, PEI Y L, et al. Theoretical research on longitudinal profile design of superhighways[J]. Journal of Advanced Transportation, 2020(1): 6680255. [11] 何永明, 冯佳, 权聪, 等. 基于联合仿真的超高速公路车辆制动避撞系统[J]. 华南理工大学学报(自然科学版), 2022, 50(10): 19-28. HE Yongming, FENG Jia, QUAN Cong, et al. Brakingcollision avoidance system for vehicles driving on superhighway based on cosimulation[J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(10): 19-28. [12] HE Y M, FENG J, WEI K, et al. Modeling and simulation of lane-changing and collision avoiding autonomous vehicles on superhighways[J]. Physica A: Statistical Mechanics and Its Applications, 2023, 609(1): 1-12. [13] 裘连毅. 超高速公路曲线型超高横断面设计方法研究[J]. 城市道桥与防洪, 2020(8): 257-261. QIU Lianyi. Study on design method of curved ultrahigh cross section of superhighway[J]. Urban Roads Bridges & Flood Control, 2020(8): 257-261. [14] 刘展行. 超级高速公路设计初探[J]. 公路交通科技(应用技术版), 2018, 14(11): 260-262. LIU Zhanhang. Preliminary study on design of superhighway[J]. Journal of Highway and Transportation Research and Development, 2018, 14(11): 260-262. [15] 赵酉超. 基于智能驾驶技术的超高速公路线形指标研究[D]. 长沙: 长沙理工大学, 2019. ZHAO Youchao. The research on linear index of super freeway based on intelligent driving technology[D]. Changsha: Changsha University of Science & Technology, 2019. [16] 张明凯, 王鹏, 卢小林, 等. 基于无人驾驶的超级高速公路设计[J]. 冶金与材料, 2020, 40(4): 152. ZHANG Mingkai, WANG Peng, LU Xiaolin, et al. Superhighway design based on driverless[J]. Metallurgy and Materials, 2020, 40(4): 152. [17] 陈芬菲, 徐鹏. 基于SWOT分析法的超高速公路发展研究[J]. 科技视界, 2018(5): 139-140. CHEN Fenfei, XU Peng. Research on developing superhighway based on SWOT analysis[J]. Science & Technology Vision, 2018(5): 139-140. [18] 周勇, 吕琛, 侯福金, 等. 基于坐标转换的多路侧激光雷达数据配准方法[J]. 山东大学学报(工学版), 2022, 52(6): 41-49. ZHOU Yong, LÜ Chen, HOU Fujin, et al. Datafusion method of multi roadside LiDAR based on coordinate transformation[J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 41-49. [19] LEE J S, PARK T H. Fast road detection by CNN-based camera-lidar fusion and spherical coordinate transformation[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(9): 5802-5810. [20] 梁钟泓, 谢元平, 张永健, 等. 基于协方差变换的INS/DVL全球组合导航算法[J]. 中国惯性技术学报, 2022, 30(2): 159-167. LIANG Zhonghong, XIE Yuanping, ZHANG Yongjian, et al. All-earth INS/DVL integrated navigation algorithm based on covariance transformation[J]. Journal of Chinese Inertial Technology, 2022, 30(2): 159-167. [21] XING X T, ZHAO B L, HAN C, et al. Vehicle motion planning with joint cartesian-frenet MPC[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 10738-10745. [22] CHEN J, ZHANG R, HAN W, et al. Path planning for autonomous vehicle based on a two-layered planning model in complex environment[J]. Journal of Advanced Transportation, 2020(9): 6649867. [23] GUO C, GUO W F, CAO G Y, et al. A lane-level LBS system for vehicle network with high-precision BDS/GPS positioning[J]. Computational Intelligence and Neuroscience, 2015(2015): 531321. |
[1] | 周勇,吕琛,侯福金,郭鑫铭,宋修广. 基于坐标转换的多路侧激光雷达数据配准方法[J]. 山东大学学报 (工学版), 2022, 52(6): 41-49. |
[2] | 宋保业,田国会,周风余. 基于CC2431的智能空间定位系统[J]. 山东大学学报(工学版), 2011, 41(1): 40-44. |
|