您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (4): 30-36.doi: 10.6040/j.issn.1672-3961.0.2022.139

• 交通工程——智慧交通专题 • 上一篇    

基于路侧激光雷达的雪天点云降噪算法

周勇1,兰晓伟2,吕斌2*,栗剑1   

  1. 1.山东高速建设管理集团有限公司, 山东 济南 250014;2.兰州交通大学交通运输学院, 甘肃 兰州 730070
  • 发布日期:2023-08-18
  • 作者简介:周勇(1962— ),男,山东胶南人,工程技术应用研究员,工学博士,主要研究方向为桥梁工程. E-mail:498589891@qq.com. *通信作者简介:吕斌(1975— ),男,甘肃平凉人,教授,博士生导师,主要研究方向为智能交通系统. E-mail:jdlbxx@mail.lzjtu.cn
  • 基金资助:
    山东省重点研发计划资助项目(2020CXGC010118);甘肃省教育厅双一流重大科研项目(GSSYLXM-04);兰州交通大学2022年实验教学改革项目(2022003)

A snow point cloud denoising algorithm based on roadside LiDAR

ZHOU Yong1, LAN Xiaowei2, LÜ Bin2*, LI Jian1   

  1. 1. Shandong Hi-Speed Construction Management Group Co., Ltd., Jinan 250014, Shandong, China;
    2. School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Published:2023-08-18

摘要: 为提高恶劣天气下路侧激光雷达的感知能力,提出一种基于路侧激光雷达的雪天点云降噪算法。去除空间中的静态冗余数据,根据噪声点分布划分不同强度的反射区域;对不同类型的噪声点采用条件滤波、统计滤波、半径滤波的方式,滤除数据中的雪花噪声;通过全卷积神经网络在降噪后的数据上进行目标检测,采用多项指标评估降噪效果。试验结果表明,采用本研究提出的叠加滤波算法可大幅减少噪声点数量,在有效检测范围内,目标检测的准确率达到98.2%,误检率降低至17.8%。该算法可提高雪天点云的数据质量,对智能车路协同系统的建设具有一定的指导意义和实践价值。

关键词: 路侧激光雷达, 雪天点云, 噪声点, 点云降噪, 叠加滤波

中图分类号: 

  • U491.8
[1] TALIB H, ISMAIL K, KASSIM A. A robust approach for road users classification using the motion cues[J]. Transportation Research Part C: Emerging Technologies, 2016, 73: 77-90.
[2] 康俊民,赵祥模,徐志刚.无人车行驶环境特征分类方法[J].交通运输工程学报,2016,16(6):140-148. KANG Junmin, ZHAO Xiangmo, XU Zhigang. Classification method of running environment features forunmanned vehicle[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6):140-148.
[3] LEE H, CHAE H, YI K. A geometric model based 2D LiDAR/radar sensor fusion for tracking surrounding vehicles[J]. IFAC-Papers OnLine, 2019, 52(8):130-135.
[4] 吴建清,宋修广.同步定位与建图技术发展综述[J].山东大学学报(工学版),2021,51(5):16-31. WU Jianqing, SONG Xiuguang. Review on dev elopment of simultaneous localization andmapping technology[J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 16-31.
[5] 杜豫川, 刘成龙, 吴荻非, 等. 新一代智慧高速公路系统架构设计[J]. 中国公路学报, 2022, 35(4):203-214. DU Yuchuan, LIU Chenglong, WU Difei, et al. Framework of the new generation of smart highway [J]. China Journal of Highway and Transport, 2022, 35(4):203-214.
[6] 吴建清, 宋修广. 智慧公路关键技术发展综述[J]. 山东大学学报(工学版), 2020, 50(4):52-69. WU Jianqing, SONG Xiuguang. Review on smart highways critical technology[J]. Journal of Shandong University(Engineering Science), 2020, 50(4):52-69.
[7] LIU Z, CAI Y, WANG H, et al. Surrounding objects detection and tracking for autonomous driving using LiDAR and radar fusion[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 1-12.
[8] SONG X, PI R, LV C, et al. Augmented multiple vehicles' trajectories extraction under occlusions with roadside LiDAR data[J]. IEEE Sensors Journal, 2021, 21(19): 21921-21930.
[9] HEINZLER R, PIEWAK F, SCHINDLER P, et al. Cnn-based lidar point cloud de-noising in adverse weather[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 2514-2521.
[10] CHARRON N, PHILLIPS S, WASLANDER S L. De-noising of lidar point clouds corrupted by snowfall[C] //2018 15th Conference on Computer and Robot Vision(CRV). Toronto, Canada: IEEE, 2018: 254-261.
[11] PARK J I, PARK J, KIM K S. Fast and accurate desnowing algorithm for LiDAR point clouds[J]. IEEE Access, 2020(8): 160202-160212.
[12] WU J, XU H, ZHENG J, et al. Automatic vehicle detection with roadside LiDAR data under rainy and snowy conditions[J]. IEEE Intelligent Transportation Systems Magazine, 2020, 13(1): 197-209.
[13] 钟科娣,刘元盛,张军,等.应用于无人驾驶车的激光雷达雪天去噪方法研究[J]. 激光与红外, 2021, 51(8):985-991. ZHONG Kedi, LIU Yuansheng, ZHANG Jun, et al. Research on snow filtering method based on unmanned vehicle lidar[J]. Laser & Infrared, 2021, 51(8):985-991.
[14] 党相卫,秦斐, 卜祥玺,等. 一种面向智能驾驶的毫米波雷达与激光雷达融合的鲁棒感知算法[J]. 雷达学报, 2021, 10(4):622-631. DANG Xiangwei, QIN Fei, BU Xiangxi, et al. A robust perception algorithm based on a radar and LiDAR for intelligent driving[J]. Journal of Radars, 2021, 10(4):622-631.
[15] 李仁忠,杨曼,冉媛,等. 基于方法库的点云去噪与精简算法[J].激光与光电子学进展, 2018, 55(1):251-257. LI Renzhong, YANG Man, RAN Yuan, et al. Point cloud denoising and simplification algorithm based on method library[J]. Laser & Optoelectronics Progress, 2018, 55(1):251-257.
[16] LI B, ZHANG T, XIA T. Vehicle detection from 3d lidar using fully convolutional network[EB/OL].(2016-08-29)[2022-04-07]. https://arxiv.org/abs/1608.07916.
[1] 周勇,吕琛,侯福金,郭鑫铭,宋修广. 基于坐标转换的多路侧激光雷达数据配准方法[J]. 山东大学学报 (工学版), 2022, 52(6): 41-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!