您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (1): 39-48.doi: 10.6040/j.issn.1672-3961.0.2022.140

• • 上一篇    

智能水泥基复合材料的电学性能

孙宇1,陈玲玲1,阳生有1,2*   

  1. 1.山东大学土建与水利学院, 山东 济南 250061;2.山东大学苏州研究院, 江苏 苏州 215123
  • 发布日期:2023-02-13
  • 作者简介:孙宇(1998— ),女,山东临沂人,硕士研究生,主要研究方向为智能水泥基复合材料. E-mail:202035040@mail.sdu.edu.cn. *通信作者简介:阳生有(1987— ),男,重庆人,教授,博士,主要研究方向为智能材料与柔性结构. E-mail:syang_mechanics@sdu.edu.cn
  • 基金资助:
    中央高校基本科研业务费专项资金资助(2020JCG012);江苏省自然科学基金(BK20200219);苏州市重点产业技术创新前瞻性应用研究(SYG202005)

Electrical properties of smart cement-matrix composites

SUN Yu1, CHEN Lingling1, YANG Shengyou1,2*   

  1. 1. School of Civil Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. Suzhou Research Institute, Shandong University, Suzhou 215123, Jiangsu, China
  • Published:2023-02-13

摘要: 为研究智能水泥基复合材料的电学性能,推动土木工程材料和结构向智能化方向发展,以碳纤维为导电填料,制备了碳纤维水泥基复合材料试样,通过电学试验和理论分析,建立等效电路模型,分析试样的阻抗频率特性,研究水灰比及碳纤维质量分数对养护过程中试样的本体电阻、本体电阻稳定值以及时间特征值的影响。结果表明,不同水灰比和碳纤维质量分数的智能水泥基复合材料的阻抗性能、本体电阻及本体电阻趋于稳定的速度不同。在水灰比为0.39、碳纤维的质量分数为0.10%时,试样的时间特征值最小,本体电阻趋于稳定的速度最快。本研究的理论模型和试验研究对进一步探索智能水泥基复合材料的电学性能及其应用有一定的指导意义。

关键词: 智能水泥, 阻抗分析, 阻抗频率特性, 本体电阻, 时间特征值

中图分类号: 

  • TU528.582
[1] VIPULANANDAN C. Smart cement: development, testing, modeling and real-time monitoring[M]. Boca Raton, FL: CRC Press, 2021:5-9.
[2] HAN B G, YU X, OU J P. Self-sensing concrete in smart structures[M]. Amsterdam, Boston: Elsevier, 2014: 362-372.
[3] VIPULANANDAN C, PRASHANTH P. Impedance spectroscopy characterization of a piezoresistive structural polymer composite bulk sensor[J]. Journal of Testing and Evaluation, 2013, 41(6): 898-904.
[4] CHUNG D D L. Cement reinforced with short carbon fibers: a multifunctional material[J]. Composites Part B: Engineering, 2000, 31: 511-516.
[5] CHUNG D D L. Self-sensing concrete: from resistance-based sensing to capacitance-based sensing[J]. International Journal of Smart and Nano Materials, 2020, 12(1): 1-19.
[6] LE J L, DU H J, PANG S D. Use of 2D graphene nanoplatelets(GNP)in cement composites for structural health evaluation[J]. Composites Part B: Engineering, 2014, 67: 555-563.
[7] LI W G, LI X Y, CHEN S J, et al. Effects of graphene oxide on early-age hydration and electrical resistivity of portland cement paste[J]. Construction and Building Materials, 2017, 136: 506-514.
[8] GE Z, WANG D W, SUN R J, et al. Carbon nanotube-cement composite for self-sensing concrete pavement[J]. Bautechnik, 2015, 92(3): 189-195.
[9] COLLINS F, LAMBERT J, DUAN W H. The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures[J]. Cement and Concrete Composites, 2012, 34(2): 201-207.
[10] 施韬, 朱敏, 李泽鑫, 等. 碳纳米管改性水泥基复合材料的研究进展[J]. 复合材料学报, 2018, 35(5): 1033-1049. SHI Tao, ZHU Min, LI Zexin, et al. Review of research progress on carbon nanotubes modified cementitious composites[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1033-1049.
[11] VAIRGAGADE V S, KENE K S. Introduction to steel fiber reinforced concrete on engineering performance of concrete[J]. International Journal of Scientific and Technology Research, 2012, 1(4): 139-141.
[12] 孙伟. 钢纤维对高强砼的增强、增韧与阻裂效应的研究[J]. 东南大学学报(自然科学版), 1991, 21(1): 50-57. SUN Wei. Influence of steel fiber on the effects of strengthening, toughening and crack arresting of high strength concrete[J]. Journal of Southeast University(Natural Science Edition), 1991, 21(1): 50-57.
[13] 张宏博, 解全一, 岳红亚, 等. 掺合镀铜织物纤维电磁屏蔽砂浆性能研究[J]. 山东大学学报(工学版), 2016, 46(1): 56-61. ZHANG Hongbo, XIE Quanyi, YUE Hongya, et al.Study on performance of electromagnetic shielding mortar mixed with copper coated fabric fiber[J]. Journal of Shandong University(Engineering Science), 2016, 46(1): 56-61.
[14] SHI C J. Steel slag: its production, processing, characteristics, and cementitious properties[J]. Journal of Materials in Civil Engineering, 2004, 16(3): 230-236.
[15] 孙家瑛. 钢渣微粉对混凝土抗压强度和耐久性的影响[J]. 建筑材料学报, 2005, 8(1): 63-66. SUN Jiaying. Influence of steel slag powder on compressive strength and durability of concrete[J]. Journal of Building Materials, 2005, 8(1): 63-66.
[16] 胡益彰, 葛智. 含钢渣的复合矿物掺合料对胶凝材料及混凝土性能的影响[J]. 硅酸盐通报, 2015, 34(10): 2737-2742. HU Yizhang, GE Zhi. Influence of composite mineral admixture containing steel slag on the properties of binder and concrete[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(10): 2737-2742.
[17] VIPULANANDAN C, MOHAMMED A. Smart cement modified with iron oxide nanoparticles to enhance the piezoresistive behavior and compressive strength for oil well applications[J]. Smart Materials and Structures, 2015, 24(12): 1-11.
[18] VIPULANANDAN C, KRISHNAMOORTI R, MOHAMMED A, et al. Iron nanoparticle modified smart cement for real time monitoring of ultra deepwater oil well cementing applications[C] //Materials Science(MS). Houston, Texas, USA: Offshore Technology Conference, 2015: 1-16.
[19] VIPULANANDAN C, MOHAMMED A. Rheological properties of piezoresistive smart cement slurry modified with iron-oxide nanoparticles for oil-well applications[J]. Journal of Testing and Evaluation, 2017, 45(6): 2050-2060.
[20] VIPULANANDAN C, MOHAMMED A, GANPATYE A S. Smart cement performance enhancement with nano Al2O3 for real time monitoring applications using vipulanandan models[C] //Materials Science(MS). Houston, Texas, USA: Offshore Technology Confer-ence, 2018: 1-15.
[21] CHUNG D D L. Strain sensors based on the electrical resistance change accompanying the reversible pull-out of conducting short fibers in a less conducting matrix[J]. Smart Materials and Structures, 1995, 4: 59-61.
[22] FU X L, CHUNG D D L. Contact electrical resistivity between cement and carbon fiber: its decrease with increasing bond strength and its increase during fiber pull-out[J]. Cement and Concrete Research, 1995, 25(7): 1391-1396.
[23] WEN S H, CHUNG D D L. Carbon fiber-reinforced cement as a strain-sensing coating[J]. Cement and Concrete Research, 2001, 31: 665-667.
[24] LI V C, OBLA K H. Effect of fiber length variation on tensile properties of carbon-fiber cement composites[J]. Composites Engineering, 1994, 4(9): 947-964.
[25] KATZ A, LI V C, KAZMER A, et al. Bond properties of carbon fibers in cementitious matrix[J]. Journal of Materials in Civil Engineering, 1995, 7(2): 125-128.
[26] WANG C, LI K Z, LI H J, et al. Effect of carbon fiber dispersion on the mechanical properties of carbon fiber-reinforced cement-based composites[J]. Materials Science and Engineering A, 2008, 487: 52-57.
[27] 杨元霞, 毛起照, 沈大荣, 等. 碳纤维水泥基复合材料中纤维分散性的研究[J]. 建筑材料学报, 2001, 4(1): 84-88. YANG Yuanxia, MAO Qizhao, SHEN Darong, et al. Study on the dispersion of fiber in carbon fiber cement composites[J]. Journal of Building Materials, 2001, 4(1): 84-88.
[28] 王闯, 李克智, 李贺军, 等. 短碳纤维的分散性与CFRC复合材料的力学性能[J]. 精细化工, 2007, 24(6): 521-525. WANG Chuang, LI Kezhi, LI Hejun, et al. Dispersivity of carbon fibers and mechanical properties of CFRC composites[J]. Fine Chemicals, 2007, 24(6): 521-525.
[29] HAN B G, GUAN X C, OU J P. Electrode design, measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors[J]. Sensors and Actuators A Physical, 2007, 135(2): 360-369.
[30] CHEN B, WU K R, YAO W. Conductivity of carbon fiber reinforced cement-based composites[J]. Cement and Concrete Composites, 2004, 26(4): 291-297.
[31] 关新春, 欧进萍, 韩宝国, 等. 碳纤维机敏混凝土材料的研究与进展[J]. 哈尔滨建筑大学学报, 2002, 35(6): 55-59. GUAN Xinchun, OU Jinping, HAN Baoguo, et al. State of art of carbon fiber reinforced concrete[J]. Journal of Harbin University of C.E. and Architecture, 2002, 35(6): 55-59.
[32] 李克智, 王闯, 李贺军, 等. 碳纤维增强水泥基复合材料的发展与研究[J]. 材料导报, 2006, 20(5): 85-88. LI Kezhi, WANG Chuang, LI Hejun,et al. Development and study of carbon fiber reinforced cement composites[J]. Materials Report, 2006, 20(5): 85-88.
[33] 唐祖全, 李卓球, 钱觉时. 碳纤维导电混凝土在路面除冰雪中的应用研究[J]. 建筑材料学报, 2004, 7(2): 215-220. TANG Zuquan,LI Zhuoqiu, QIAN Jueshi. Application of carbon fiber reinforced conductive concrete for melting ice and snow on road surface[J]. Journal of Building Materials, 2004, 7(2): 215-220.
[34] HAN B G, OU J P. Embedded piezoresistive cement-based stress/strain sensor[J]. Sensors and Actuators A Physical, 2007, 138(2): 294-298.
[35] 吴科如, 陈兵, 姚武. 碳纤维机敏水泥基材料性能研究[J]. 同济大学学报(自然科学版), 2002, 30(4): 456-463. WU Keru, CHEN Bing, YAO Wu. Smart properties of carbon fiber reinforced cement based composite[J]. Journal of Tongji University(Natural Science), 2002, 30(4): 456-463.
[36] 赵晓华, 李国宝, 王玉林, 等. 碳纤维增强水泥基复合材料的压阻效应[J]. 复合材料学报, 2011, 28(5): 214-219. ZHAO Xiaohua, LI Guobao,WANG Yulin, et al. Piezoresistivity of carbon fiber reinforced cement-matrix composites[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 214-219.
[37] 毛起照, 赵斌元, 沈大荣, 等. 水泥基碳纤维复合材料压敏性的研究[J]. 复合材料学报, 1996, 13(4): 8-11. MAO Qizhao, ZHAO Binyuan, SHEN Darong, et al. Study on the compression sensibility of cement matrix carbon fiber composites[J]. Acta Materiae Compositae Sinica, 1996, 13(4): 8-11.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!