您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (1): 106-113.doi: 10.6040/j.issn.1672-3961.0.2021.585

• • 上一篇    

考虑温度相关性的岩石热破裂数值模拟

王骏林1,冯春2,张一鸣1*   

  1. 1.河北工业大学土木与交通学院, 天津300401;2.中国科学院力学研究所, 北京100190
  • 发布日期:2023-02-13
  • 作者简介:王骏林(1997— ),男,广东茂名人,硕士研究生,主要研究方向为岩土工程. E-mail:2623278358@qq.com. *通信作者简介:张一鸣(1984— ),男,上海人,教授,主要研究方向为岩土工程以及土木工程防灾减灾相关研究. E-mail:yiming.zhang@hebut.edu.cn

Numerical simulation of rock thermal fracture considering the temperature dependence

WANG Junlin1, FENG Chun2, ZHANG Yiming1*   

  1. 1. School of Civil and Transportation Engineering, Hebei University of Techonology, Tianjin 300401, China;
    2. Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
  • Published:2023-02-13

摘要: 为解决岩石热力学参数如比热、热传导系数等会伴随温度变化而影响岩石热破裂的问题,基于连续-非连续元方法,采用显式积分建立一种考虑参数温度关联性的岩石瞬态热-力-破裂耦合数值模型,通过该模型研究不同升温速率对岩石热裂过程的影响。结果表明:考虑参数温度关联时,破裂速率、破裂程度比不考虑参数温度关联小;裂缝最大宽度比不考虑参数温度关联时大、开裂持续时间更长。

关键词: 岩石热破裂, 连续-非连续单元方法, 温度相关性, 耦合分析, 升温速率

中图分类号: 

  • TU45
[1] 谭启,骆循,李仕雄,等.岩石热破裂研究进展评述[J].露天采矿技术,2006(6):16-19. TAN Qi, LUO Xun, LI Shixiong, et al. A review of research progress on rock thermal fracture[J]. Opencast Mining Technology, 2006(6): 16-19.
[2] 韩学辉,楚泽涵,张元中.岩石热开裂及其在工程学上的意义[J].石油实验地质,2005(1):98-100. HAN Xuehui, CHU Zehan, ZHANG Yuanzhong. Rock thermal cracking and its significance in engineering[J]. Petroleum Geology and Experiment, 2005(1): 98-100.
[3] 邓红卫,田维刚,周科平,等.2001—2012年岩石冻融力学研究进展[J].科技导报,2013,31(24):74-79. DENG Hongwei, TIAN Weigang, ZHOU Keping,et al. Research progress in rock freeze-thaw mechanics from 2001 to 2012[J]. Science & Technology Review, 2013, 31(24): 74-79.
[4] HEARDH C.Thermal expansion and inferred permeability of climax quartz monzonite to 300 ℃ and 27.6 MPa[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1980, 17(5):289-296.
[5] HEUZEF E. High-temperature mechanical, physical and thermal properties of granitic rocks:a review[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983, 20(1): 3-10.
[6] SHEN Yanjun, HOU Xin, YUAN Jiangqiang, et al. Experimental study on temperature change and crack expansion of high temperature granite under different cooling shock treatments[J]. Energies, 2019, 12(11):1-17.
[7] MAO Rongrong, MAO Xianbiao, ZHANG Lianying, et al. Effect of loading rates on the characteristics of thermal damage for mudstone under different temperatures[J].International Journal of Mining Science and Technology, 2015, 25(5):797-801.
[8] PENG Kang, LÜ Hong, YAN Fazhi, et al. Effects of temperature on mechanical properties of granite under different fracture modes[J]. Engineering Fracture Mechanics, 2020, 226: 106838.
[9] YAN Chengzeng, ZHENG Yuchen, HUANG Duruo, et al. A coupled contact heat transfer and thermal cracking model for discontinuous and granular media[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 375:113587.
[10] JIAO Yuyong, ZHANG Xiuli, ZHANG Huanqiang, et al. A coupled thermo-mechanical discontinuum model for simulating rock cracking induced by temperature stresses[J]. Computers and Geotechnics, 2015, 67(1):142-149.
[11] YAN Chengzeng, ZHENG Hong. A coupled thermo-mechanical model based on the combined finite-discrete element method for simulating thermal cracking of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 11(23):170-178.
[12] TAO Siji, TANG Xuhai, RUTQVIST Jonny, et al. Simulating three dimensional thermal cracking with TOUGH-FEMM[J]. Computers and Geotechnics, 2020, 124(11):103654.
[13] YANG Zhen, YANG Shengqi, TIAN Wenling. Peridynamic simulation of fracture mechanical behaviour of granite specimen under real-time temperature and post-temperature treatments[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138:104573.
[14] WU You, YIN Tubing, TANG Xiaosong, et al. Determination of the mixed mode I/II fracture characteristics of heat-treated granite specimens based on the extended finite element method[J]. Engineering Fracture Mechanics, 2021, 252:107818.
[15] 李腊梅,冯春.一种非连续介质中热传导过程的数值模拟方法[J].工程力学,2016,33(1):25-31. LI Lamei, FENG Chun. A numerical simulation method of heat conduction process in discontinuous medium[J]. Engineering Mechanics, 2016, 33(1): 25-31.
[16] WANG Fei, HEINZ Konietzky, MARTIN Herbst. Influence of heterogeneity on thermo-mechanical behaviour of rocks[J]. Computers and Geotechnics, 2019, 116: 103184.
[17] WANG Fei. Thermo-mechanical properties of granite at elevated temperatures and numerical simulation of thermal cracking[J].Rock Mechanics and Rock Engineering, 2019, 52(10): 3737-3755.
[18] FENG Chun, LI Shihai, LIU Xiaoyu, et al. A semi-spring and semi-edge combined contact model in CDEM and its application to analysis of Jiweishan landslide[J]. Journal of Rock Mechanics and Geotechnical Engin-eering, 2014, 6(1): 26-35.
[1] 张一鸣,李赟鹏,李婧,丛俊余. 孔隙裂隙介质多场耦合数值计算进展[J]. 山东大学学报 (工学版), 2022, 52(6): 63-78.
[2] 弋晓明1,2,李术才1,王松根2,刘振清2. 非饱和粉土回弹模量的应力依赖性与水敏感性耦合分析[J]. 山东大学学报(工学版), 2013, 43(2): 84-88.
[3] 徐昊,魏守水*,张敬涛. 一种新型微流体主动混合器的仿真与分析[J]. 山东大学学报(工学版), 2010, 40(3): 57-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!