您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (2): 74-79.doi: 10.6040/j.issn.1672-3961.0.2021.388

• • 上一篇    

一个具有多稳定流的广义Hamiltonian保守混沌系统

贾红艳,陈忠告,石文欣,韩晓光*   

  1. 天津科技大学电子信息与自动化学院, 天津 300222
  • 发布日期:2022-04-20
  • 作者简介:贾红艳(1972— ),女,天津人,副教授,博士,主要研究方向为非线性系统分析与控制、控制系统分析与设计. E-mail:jiahy@tust.edu.cn. *通信作者简介:韩晓光(1984— ),男,黑龙江海伦人,副教授,博士,主要研究方向为离散事件系统、信息物理系统. E-mail:hxg-allen@163.com
  • 基金资助:
    国家自然科学基金项目(61873186,61903274);天津市自然科学基金项目(17JCZDJC38300,18JCQNJC74000)

A generalized Hamiltonian conservative chaotic system with multi-stable flows

JIA Hongyan, CHEN Zhonggao, SHI Wenxin, HAN Xiaoguang*   

  1. College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China
  • Published:2022-04-20

摘要: 通过分析一个三维保守混沌系统的力学和能量特性,发现当参数a=b时,该三维保守系统实际上是一个新的四维广义Hamiltonian保守系统的三维子系统。通过对新的广义Hamiltonian保守系统进行数值分析,如李雅普诺夫指数、分岔图、相轨迹等,发现其具有非常丰富的动力学行为:混沌特性、周期特性、拟周期特性。通过分析该广义Hamiltonian保守系统平衡点特性,发现其动力学行为呈现隐藏特性。同时,在系统参数不变的情况下,通过改变初值,发现该广义Hamiltonian保守系统具有多稳定性。利用现场可编程逻辑门阵列(field programmable gate array, FPGA)实现了该广义Hamiltonian保守系统,试验结果和数值分析结果是一致的。分别从数值分析和物理特性上验证了该广义Hamiltonian保守系统隐藏混沌特性和多稳定性的存在,为应用提供了新的模型。

关键词: 多稳定流, 保守系统, 混沌特性, 隐藏特性, FPGA实现

中图分类号: 

  • TP29
[1] HENON M, HELLES C. The applicability of the third integral of motion: some numerical experiments[J]. Astrophys Journal, 1964, 69(1): 73-79.
[2] SPROTT J C. Some simple chaotic flows[J]. Physical Review E, 1994, 50(2): 647-650.
[3] HOOVER W G. Remark on “some simple chaotic flows” [J]. Physical Review E, 1995, 51(1): 759-760.
[4] POSCH H A, HOOVER W G, VESELY F J. Canonical dynamics of the Nosé-oscillator: stability, order, and chaos[J]. Physical Review A, 1986, 33(6): 4253-4265.
[5] HOOVER W G. Canonical dynamics: equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3): 1695-1697.
[6] SPROTT J C. Some simple chaotic jerk functions[J]. American Journal of Physics, 1997, 65(6): 537-543.
[7] THOMAS R. Deterministic chaos seen in terms of feedback circuits: analysis, synthesis, “labyrnth chaos” [J]. International Journal of Bifurcation and Chaos, 1999, 9(10): 1889-1905.
[8] VAIDYANATHAN S, VOLOS C. Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system[J]. Archives of Control Sciences, 2015, 25(3): 333-353.
[9] MAHMOUD G M, AHMED M E. Analysis of chaotic and hyperchaotic conservative complex nonlinear systems[J]. Miscolc Mathematical Notes, 2017, 18(1): 315-326.
[10] SINGH J P, ROY B K. Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria[J]. Chaos, Solitons and Fractals, 2018, 114: 81-91.
[11] VAIDYANATHAN S, PAKIRISWAMY S. A 3-D novel conservative chaotic system and its generalized projective synchronization via adaptive control[J]. Journal of Engineering Science & Technology, 2015, 8(2): 52-60.
[12] CANG S J, WU A G, WANG Z H. On a 3-D generalized Hamiltonian model with conservative and dissipative chaotic flows[J]. Chaos, Solitons and Fractals, 2017, 99: 45-51.
[13] GUGAPRIYA G, RAJAGOPAL K, KARTHIKEYAN A. A family of conservative chaotic systems with cyclic symmetry[J]. Pramana-Journal of Physics, 2019, 92(4): 48-54.
[14] CANG S J, LI Y, XUE W. Conservative chaos and invariant tori in the modified Sprott A system[J]. Nonlinear Dynamics, 2020, 99(2): 1699-1708.
[15] QI G Y, HU J B, WANG Z. Modeling of a Hamiltonian conservative chaotic system and its mechanism routes from periodic to quasiperiodic, chaos and strong chaos[J]. Applied Mathematical Modeling, 2020, 78: 350-365.
[16] QI G Y. Modelings and mechanism analysis underlying both the 4D Euler equations and Hamiltonian con-servative chaotic systems[J]. Nonlinear Dynamics, 2019, 95(3): 2063-2077.
[17] JIA H Y, SHI W X, WANG L. Analysis of Sprott-A system and generation of a new Hamiltonian conservative chaotic system with coexisting hidden attractors[J]. Chaos, Solitons and Fractals, 2020, 133: 109635.
[18] CANG S J, WU A G, ZHANG R Y. Conservative chaos in a class of non-conservative systems: theoretical analysis and numerical demonstrations[J]. International Journal of Bifurcation and Chaos, 2018, 28(7): 1850087.
[19] DONG E Z, YUAN M F, DU S Z. A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator[J]. Applied Mathematical Modeling, 2019, 73: 40-71.
[20] XIAN Y J, XIA C, GUO T T. Dynamical analysis and FPGA implementation of a large range chaotic system with coexisting attractors[J]. Results in Physics, 2018, 11: 368-376.
[21] LI C B, SPROTT J C. Multistability in the Lorenz system: a broken butterfly[J]. International Journal of Bifurcation and Chaos, 2014, 24: 1450131.
[22] JIA H Y, SHI W X, QI G Y. Coexisting attractors, energy analysis and boundary of Lü system[J]. International Journal of Bifurcation and Chaos, 2020, 30(3): 2050048.
[23] WANG F P, WANG F Q. Multistability and coexisting transient chaos in a simple memcapacitive system[J]. Chinese Physics B, 2020, 29(5): 58502.
[24] ZHANG S, ZENG Y H, LI Z J. Generating one to four-wing hidden attractors in a novel 4D no-equilibrium chaotic system with extreme multistability[J]. Chaos, 2018, 28: 13113.
[25] LEONOV G, KUZNETSOV N, VAGAITSEV V. Localization of hidden Chua's attractors[J]. Physics Letters A, 2011, 375(23): 2230-2233.
[26] JAFARI S, SPROTT J. Simple chaotic flows with a line equilibrium[J]. Chaos, Solitons and Fractals, 2013, 57: 79-84.
[27] ZHENG G C, LIU C X, WANG Y. Dynamic analysis and finite time synchronization of a fractional-order chaotic system with hidden attractors[J]. Acta Physica Sinica, 2018, 67(5): 50502.
[28] BAO B, BAO H, WANG N. Hidden extreme multistability in memristive hyperchaotic system[J]. Chaos, Solitons and Fractals, 2017, 94: 102-111.
[29] CHEN M, SUN M, BAO B. Controlling extreme multistability of memristor emulator-based dynamical circuit in flux—charge domain[J]. Nonlinear Dynamic, 2018, 91(2): 1395-1412.
[30] JAFARI S, SPROTT J C, DEHGHAN S. Categories of conservative flows[J]. International Journal of Bifurcation and Chaos, 2019, 29(2): 1950021.
[31] SINGH J P, ROY B K. Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria[J]. Chaos, Solitons and Fractals, 2018, 114: 81-91.
[32] LIANG X Y, QI G Y. Mechanical analysis of Chen chaotic system[J]. Chaos, Solitons and Fractals, 2017, 98: 173-177.
[33] JIA H Y, GUO Z Q, WANG S F. Mechanics analysis and hardware implementation of a new 3D chaotic system[J]. International Journal of Bifurcation and Chaos, 2018, 28(13): 1850161.
[34] ANTONELLO P, VINICIO P. A unified view of Kolmogorov and Lorenz systems[J]. Physics Letters A, 2000, 275(5/6): 435-446.
[1] 陈畅,李晓磊,崔维玉. 基于LSTM网络预测的水轮机机组运行状态检测[J]. 山东大学学报 (工学版), 2019, 49(3): 39-46.
[2] 薛薇,谭东程,张妹,刘世龙. 基于FPGA的四翼超混沌系统同步及其保密视频通信[J]. 山东大学学报 (工学版), 2019, 49(3): 1-7.
[3] 王琦,孙竹梅,刘少虹,白建云. 基于现场总线兼容技术的除尘系统一体化改造[J]. 山东大学学报(工学版), 2018, 48(4): 37-41.
[4] 刘志清,高浩瀚,安沫霖,张学凯. 基于完工概率修正的关键链法项目进度优化[J]. 山东大学学报(工学版), 2018, 48(1): 104-111.
[5] 刘兆娟,刘锦波 . 基于输入输出反馈线性化三态Boost DC/DC变换器的新型控制策略[J]. 山东大学学报(工学版), 2008, 38(1): 43-47 .
[6] 方炜, , 姜长生, , 钱承山 . 一类非线性不确定时滞系统的模糊跟踪控制[J]. 山东大学学报(工学版), 2007, 37(5): 47-52 .
[7] 臧利林,贾磊,林忠琴 . 基于模糊逻辑交通信号优化控制算法[J]. 山东大学学报(工学版), 2006, 36(1): 41-45 .
[8] 姬帅, 张承瑞, 孙书仁, 胡天亮. 基于实时以太网的开放式运动控制系统[J]. 山东大学学报(工学版), 2014, 44(5): 7-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!