山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (3): 30-36.doi: 10.6040/j.issn.1672-3961.0.2020.445
陶亮1,刘宝宁1,梁玮2*
TAO Liang1, LIU Baoning1, LIANG Wei2*
摘要: 提出一种卷积神经网络(convolutional neural network, CNN)和长短时记忆(long short-term memory, LSTM)网络混合的心律失常自动检测算法,模型结构共由5层卷积层、5层池化层、1层LSTM层和1层全连接层组成。利用CNN能够自动提取特征和LSTM能够捕捉时间序列前后依赖关系的能力,将简单预处理后的心电信号数据直接输入到混合模型当中。整个模型将特征提取和分类器分类2个步骤结合,从而更加高效、准确地识别5种不同的心律失常疾病。在测试集上进行试验,准确率、敏感性和特异性分别为99.48%、99.47%和99.86%。试验结果表明,本研究提出的方法能够高效、准确地识别不同类型的心律失常疾病。
中图分类号:
[1] | VAN DRIEST S L,WELLS Q S, STALLINGS S, et al. Association of arrhythmia-related genetic variants with phenotypes documented in electronic medical records[J]. JAMA, 2016, 315(1):47-57. |
[2] | KANANI P,PADOLE M. ECG heartbeat arrhythmia classification using time-series augmented signals and deep learning approach[J]. Procedia Computer Science, 2020, 171:524-531. |
[3] | LI Qiao, CADATHUR R, GARI D C. Ventricular fibrillation and tachycardia classification using a machine learning approach[J]. IEEE Transactions on Bio-medical Engineering, 2014, 61(6):1607-1613. |
[4] | SHADNAZ A, ALIREZA M, MARYAM M. Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine[J]. Computers in Biology and Medicine, 2015, 60:132-142. |
[5] | MA Fengying, ZHANG Jingyao, LIANG Wei, et al. Automated classification of atrial fibrillation using artificial neural network for wearable devices[J]. Mathematical Problems in Engineering, 2020, 2020:1-6. |
[6] | SAHOO S, SUBUDHI A, DASH M, et al. Automatic classification of cardiac arrhythmias based on hybrid features and decision tree algorithm[J]. International Journal of Automation and Computing, 2020, 17(4):551-561. |
[7] | LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42:60-88. |
[8] | XIA Yong, NAREN W, WANG Kuanquan, et al. Detecting atrial fibrillation by deep convolutional neural networks[J]. Computers in Biology and Medicine, 2018, 93:84-92. |
[9] | ROMDHANE T F, ALHICHRI H, OUNI R, et al. Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss[J]. Computers in Biology and Medicine, 2020, 123:103866. |
[10] | NIU Jinghao, TANG Yongqiang, SUN Zhengya,et al. Inter-patient ECG classification with symbolic representations and multi-perspective convolutional neural networks[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(5):1321-1332. |
[11] | SHARMA A, GARG N, PATIDAR S, et al. Automated pre-screening of arrhythmia using hybrid combination of Fourier-Bessel expansion and LSTM[J]. Computers in Biology and Medicine, 2020, 120:103753. |
[12] | SAEED S, MOHAMMADHOSEIN O, MATIN H. LSTM-based ECG classification for continuous moni-toring on personal wearable devices[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(2):515-523. |
[13] | HAMMAD M, ZHANG Shanzhuo, WANG Kuanquan. A novel two-dimensional ECG feature extraction and classification algorithm based on convolution neural network for human authentication[J]. Future Generation Computer Systems, 2019, 101: 180-196. |
[14] | FRANCISCO O,DANIEL R. Deep convolutional and LSTMrecurrent neural networks for multimodal wearable activity recognition[J]. Sensors, 2016, 16(1):115. |
[15] | GOLDBERGER A L, AMARAL L A N, GLASS L, et al. Physiobank, physiotoolkit, and physionet: com-ponents of a new research resource for complex physiologic signals[J]. Circulation: Journal of the American Heart Association, 2000, 101(23):215-220. |
[16] | PAN J, TOMPKINS W J. A real-time QRS detection algorithm[J]. IEEE Transactions on Bio-medical Engineering, 1985, 32(3):230-236. |
[17] | SOREN D, EMILY J, PETER M. Singular values for ReLUlayers[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019:3594-3605. |
[18] | ZHOU Ji, WANG Haide, WEI Jinlong, et al. Adaptive moment estimation for polynomial nonlinear equalizer in PAM8-based optical interconnects[J]. Optics Express, 2019, 27(22):32210-32216. |
[19] | SAHOO S, KANUNGO B, BEHERA S, et al. Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities[J]. Measurement, 2017, 108:55-66. |
[20] | ELHAJ F A, SALIM N, HARRIS A R, et al. Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals[J]. Computer Methods and Programs in Biomedicine, 2016, 127:52-63. |
[21] | LI Taiyong, ZHOU Min. ECG classification using wavelet packet entropy and random forests[J]. Entropy, 2016, 18(8):285. |
[22] | ACHARYA U R, OH S L, HAGIWARA Y, et al. A deep convolutional neural network model to classify heartbeats[J]. Computers in Biology and Medicine, 2017, 89:389-396. |
[23] | 张异凡,黄亦翔,汪开正,等.用于心律失常识别的LSTM和CNN并行组合模型[J].哈尔滨工业大学学报,2019,51(10):76-82. ZHANG Yifan, HUANG Yixiang, WANG Kaizheng, et al. LSTM and CNN parallel combination models for arrhythmia recognition[J]. Journal of Harbin Institute of Technology, 2019, 51(10):76-82. |
[1] | 廖锦萍,莫毓昌,YAN Ke. 基于C-LSTM的短期用电预测模型和应用[J]. 山东大学学报 (工学版), 2021, 51(2): 90-97. |
[2] | 刘帅,王磊,丁旭涛. 基于Bi-LSTM的脑电情绪识别[J]. 山东大学学报 (工学版), 2020, 50(4): 35-39. |
[3] | 廖南星,周世斌,张国鹏,程德强. 基于类激活映射-注意力机制的图像描述方法[J]. 山东大学学报 (工学版), 2020, 50(4): 28-34. |
[4] | 李春阳,李楠,冯涛,王朱贺,马靖凯. 基于深度学习的洗衣机异常音检测[J]. 山东大学学报 (工学版), 2020, 50(2): 108-117. |
[5] | 张海军,陈映辉. 语义分析及向量化大数据跨站脚本攻击智检[J]. 山东大学学报 (工学版), 2020, 50(2): 118-128. |
[6] | 宋士奇,朴燕,蒋泽新. 基于改进YOLOv3的复杂场景车辆分类与跟踪[J]. 山东大学学报 (工学版), 2020, 50(2): 27-33. |
[7] | 蔡国永,林强,任凯琪. 基于域对抗网络和BERT的跨领域文本情感分析[J]. 山东大学学报 (工学版), 2020, 50(1): 1-7,20. |
[8] | 侯霄雄,许新征,朱炯,郭燕燕. 基于AlexNet和集成分类器的乳腺癌计算机辅助诊断方法[J]. 山东大学学报 (工学版), 2019, 49(2): 74-79. |
[9] | 权稳稳,林明星. CNN特征与BOF相融合的水下目标识别算法[J]. 山东大学学报 (工学版), 2019, 49(1): 107-113. |
[10] | 梁蒙蒙,周涛,夏勇,张飞飞,杨健. 基于PSO-ConvK卷积神经网络的肺部肿瘤图像识别[J]. 山东大学学报 (工学版), 2018, 48(5): 77-84. |
[11] | 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报 (工学版), 2018, 48(5): 47-54. |
[12] | 谢志峰,吴佳萍,马利庄. 基于卷积神经网络的中文财经新闻分类方法[J]. 山东大学学报(工学版), 2018, 48(3): 34-39. |
[13] | 赵彦霞, 王熙照. 基于SVD和DCNN的彩色图像多功能零水印算法[J]. 山东大学学报(工学版), 2018, 48(3): 25-33. |
[14] | 何正义,曾宪华,郭姜. 一种集成卷积神经网络和深信网的步态识别与模拟方法[J]. 山东大学学报(工学版), 2018, 48(3): 88-95. |
[15] | 徐姗姗,刘应安*,徐昇. 基于卷积神经网络的木材缺陷识别[J]. 山东大学学报(工学版), 2013, 43(2): 23-28. |
|