您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (4): 98-107.doi: 10.6040/j.issn.1672-3961.0.2019.776

• • 上一篇    

考虑内部动态约束的MMC功率运行区间的确定及控制方法

张锋1,杨桂兴1,岳晨晶2*,郝全睿2,李东2   

  1. 1. 国网新疆电力有限公司, 新疆 乌鲁木齐 830063;2. 山东大学电气工程学院, 山东 济南 250061
  • 发布日期:2020-08-13
  • 作者简介:张锋(1978— ),男,新疆哈密人,高级工程师,主要研究方向为电力系统自动化,柔性直流输电. E-mail:249233542@qq.com. *通信作者简介:岳晨晶(1996— ),女,河北衡水人,硕士研究生,主要研究方向为柔性直流输电等. E-mail:chenjingyue@mail.sdu.edu.cn
  • 基金资助:
    国网新疆电力有限公司科研资助项目(SGXJ0000TKJS1900207);国家自然科学基金资助项目(51877125)

Determination and control method on power operating area of modular multilevel converter considering the constraint of internal dynamics

ZHANG Feng1, YANG Guixing1, YUE Chenjing2*, HAO Quanrui2, LI Dong2   

  1. 1. State Grid Xinjiang Electric Power Co., Ltd., Urumqi 830063, Xinjiang, China;
    2. School of Electrical Engineering, Shandong University, Jinan 250061, Shandong, China
  • Published:2020-08-13

摘要: 为了正确评估模块化多电平换流器(modular multilevel converter, MMC)的内部动态约束对运行区间的影响,提出一种通过求解MMC状态空间方程来获取MMC内部动态进而确定其功率运行区间的功率扫描方法。建立基于模块化多电平换流器的柔性直流输电(modular multilevel converter based high voltage direct current, MMC-HVDC)系统的稳态模型,通过求解状态方程得出各功率点对应的状态变量;提出一种系统非正弦周期电气量极值的计算方法求解各内部动态约束的幅值;通过逐点扫描得到满足MMC内部动态约束和常规约束时的功率运行区间。针对功率设置可能越限的情况,设计保证系统满足内部动态约束的边界控制策略。在PSCAD/EMTDC中进行仿真,仿真结果验证了MMC功率运行区间确定方法的正确性及边界控制策略的有效性。

关键词: 模块化多电平换流器, 内部动态, 极值, 功率运行区间, 边界控制策略

Abstract: This paper proposed a point-scanning method to obtain the internal dynamics of modular multilevel converter(MMC)and determine its operating area by solving the state-space equations. A steady-state model of modular multilevel converter based high voltage direct current(MMC-HVDC)system was developed, and the corresponding state variables of each power point were obtained by solving the state equations. A method to calculate the extreme value of non-sinusoidal periodic quantities was proposed to solve the amplitude of internal dynamics constraints. The power operating area of MMC was obtained when the internal dynamic constraints and the conventional constraints were considered by the point-scanning method. Based on the analysis results, a boundary control strategy was designed to ensure that the system satisfied the internal dynamic constraints. Simulation results in PSCAD/EMTDC verified the correctness of the MMC power operating area determination method and validity of the boundary control strategy.

Key words: modular multilevel converter, internal dynamics, extreme value, power operating area, boundary control strategy

中图分类号: 

  • TM46
[1] 徐政,薛英林,张哲任. 大容量架空线柔性直流输电关键技术及前景展望[J]. 中国电机工程学报, 2014, 34(29): 5051-5062. XU Zheng, XUE Yinglin, ZHANG Zheren. VSC-HVDC technology suitable for bulk power overhead line transmission[J]. Proceedings of the CSEE, 2014, 34(29): 5051-5062.
[2] 徐政,屠卿瑞,裘鹏. 从2010国际大电网会议看直流输电技术的发展方向[J]. 高电压技术, 2010, 36(12): 3070-3077. XU Zheng, TU Qingrui, QIU Peng. New trends in HVDC technology viewed through CIGRE 2010 [J]. High Voltage Engineering, 2010, 36(12): 3070-3077.
[3] 蒋冠前,李志勇,杨慧霞,等. 柔性直流输电系统拓扑结构研究综述[J]. 电力系统保护与控制, 2015, 43(15): 145-153. JIANG Guanqian, LI Zhiyong, YANG Huixia, et al. Research review on topological structure of flexible HVDC system [J]. Power System Protection and Control, 2015, 43(15): 145-153.
[4] MA Perez, BERNET S, RODRIGUEZ J, et al. Circuit topologies, modeling, control schemes, and applications of modular multilevel converters[J]. IEEE Transactions on Power Electronics, 2015, 30(1): 4-17.
[5] ZHANG Jianpo, ZHAO Chengyong. The research of SM topology with DC fault tolerance in MMC-HVDC[J]. IEEE Transactions on Power Delivery, 2015, 30(3): 1561-1568.
[6] TU Qingrui, XU Zheng, XU Lie. Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters[J]. IEEE Transactions on Power Delivery, 2011, 26(3): 2009-2017.
[7] 李国庆,王威儒,辛业春,等. 模块化多电平换流器子模块分组排序调制策略[J]. 高电压技术, 2018, 44(7): 2107-2114. LI Guoqing, WANG Weiru, XIN Yechun, et al. Sub-module grouping modulation strategy of modular multilevel converter[J]. High Voltage Engineering, 2018, 44(7): 2107-2114.
[8] LU Maozeng, HU Jiabing, ZENG Rong, et al. Imbalance mechanism and balanced control of capacitor voltage for a hybrid modular multilevel converter[J]. IEEE Transactions on Power Electronics, 2018, 33(7): 5686-5696.
[9] 万勋,李云丰,彭敏放. 直流输电系统虚拟并联电阻阻尼控制策略研究[J]. 中国电机工程学报, 2018, 38(12): 3471-3480. WAN Xun, LI Yunfeng, PENG Minfang. Virtual parallel resistor damping control of VSC based HVDC system[J]. Proceedings of the CSEE, 2018, 38(12): 3471-3480.
[10] 孟经伟,宋强,孙谦浩,等. 基于环流解析分析的MMC电容电压优化控制策略[J]. 高电压技术, 2019, 45(3): 882-889. MENG Jingwei, SONG Qiang, SUN Qianhao, et al. Optimization control strategy of capacitor voltage for modular multilevel converter based on mathematical analysis of circulating current[J]. High Voltage Engineering, 2019, 45(3): 882-889.
[11] JAMSHIDIFAR A, JOVCIC D. Small-signal dynamic DQ model of modular multilevel converter for system studies[J]. IEEE Transactions on Power Delivery, 2016, 31(1): 191-199.
[12] HAO Quanrui, LI Zheng, GAO Feng, et al. Reduced-order small-signal models of modular multilevel converter and MMC-based HVDC grid[J]. IEEE Transactions on Industrial Electronics, 2019, 66(3): 2257-2268.
[13] 李探, ANIRUDDHA M Gole, 赵成勇. 考虑内部动态特性的模块化多电平换流器小信号模型[J]. 中国电机工程学报, 2016, 36(11): 2890-2899. LI Tan, ANIRUDDHA M Gole, ZHAO Chengyong. Small-signal model of the modular multilevel converter considering the internal dynamics[J]. Proceedings of the CSEE, 2016, 36(11): 2890-2899.
[14] 王姗姗,周孝信,汤广福,等. 交流电网强度对模块化多电平换流器HVDC运行特性的影响[J]. 电网技术, 2011, 35(2): 17-24. WANG Shanshan, ZHOU Xiaoxin, TANG Guangfu, et al. Influence of AC system strength on operating characteristics of MMC-HVDC[J]. Power System Technology, 2011, 35(2): 17-24.
[15] 张静, 孙维真, 费建平, 等. MMC-HVDC的稳态运行范围研究[J]. 电力建设, 2015, 36(3): 1-6. ZHANG Jing, SUN Weizhen, FEI Jianping, et al. Steady-state operating range of MMC-HVDC[J]. Electric Power Construction, 2015, 36(3): 1-6.
[16] 徐政, 肖晃庆, 张哲任, 等. 柔性直流输电系统[M]. 2版. 北京: 机械工业出版社, 2017.
[17] 屠卿瑞, 陈志光, 曾耿晖, 等. 模块化多电平换流器稳态功率运行范围的确定方法[J]. 电力系统自动化, 2015, 39(10): 131-137. TU Qingrui, CHEN Zhiguang, ZENG Genghui, et al. A method of determining steady-state power operation for modular multilevel converter[J]. Automation of Electric Power Systems, 2015, 39(10): 131-137.
[18] 刘莹, 吴林林, 徐曼, 等. 考虑新能源集群孤网接入的柔直换流站稳态运行区间研究[J]. 华北电力技术, 2017(6): 8-13. LIU Ying, WU Linlin, XU Man, et al. Study on steady-state operation region of VSC-HVDC converter station connecting new energy cluster by isolated network[J]. North China Electric Power, 2017(6): 8-13.
[19] 林环城, 王志新. MMC功率运行区域分析及环流切换控制策略[J]. 电力自动化设备, 2018, 38(8): 31-37. LIN Huancheng, WANG Zhixin. Power operation region analysis and circulating current switching control strategy for MMC[J]. Electric Power Automation Equipment, 2018, 38(8): 31-37.
[20] 鲁晓军, 林卫星, 安婷, 等. MMC电气系统动态相量模型统一建模方法及运行特性分析[J]. 中国电机工程学报, 2016, 36(20): 5479-5491. LU Xiaojun, LIN Weixing, AN Ting, et al. A unified dynamic phasor modeling and operating characteristic analysis of electrical system of MMC[J]. Proceedings of the CSEE, 2016, 36(20): 5479-5491.
[21] 马为民, 蒋维勇, 李亚男. 大连柔性直流输电工程的系统设计[J]. 电力建设, 2013, 34(5): 1-5. MA Weimin, JIANG Weiyong, LI Yanan. System design for Dalian VSC-HVDC power transmission project[J]. Electric Power Construction, 2013, 34(5): 1-5.
[1] 梁玮1,2,陶亮3,张光先1,李振华1. 基于特征提取和极值搜索的焊接缺陷检测算法[J]. 山东大学学报(工学版), 2014, 44(3): 48-51.
[2] 张劲松,李歧强,王朝霞 . 基于混沌搜索的混和粒子群优化算法[J]. 山东大学学报(工学版), 2007, 37(1): 47-50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!