您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (4): 52-69.doi: 10.6040/j.issn.1672-3961.0.2020.149

• 土木工程 • 上一篇    下一篇

智慧公路关键技术发展综述

吴建清(),宋修广*()   

  1. 山东大学齐鲁交通学院,山东 济南 250061
  • 收稿日期:2020-05-06 出版日期:2020-08-20 发布日期:2020-08-13
  • 通讯作者: 宋修广 E-mail:jianqingwusdu@sdu.edu.cn;songxiuguang@sdu.edu.cn
  • 作者简介:吴建清,1988年11月生,工学博士、教授、博士生导师、齐鲁青年学者。美国交通工程师协会(ITE)会员,美国土木工程师学会(ASCE)会员,电气和电子工程师协会(IEEE)会员。专业方向为交通信息系统及控制,开发了世界上首个基于路侧激光雷达的车路协同系统,在AAP、IEEE ITSM、JSR、TRR、TRC、TRF等著名期刊发表科技论文30余篇。担任交通及智能监测领域内15个知名期刊的审稿专家。先后获ITE科技进步一等奖5项,TRB杰出论文奖1项,美国联邦公路管理局科技奖1项。(1988—),男,山东烟台人,教授,博士,主要研究方向为智能路侧设施等. E-mail:jianqingwusdu@sdu.edu.cn
  • 基金资助:
    山东省重点研发计划项目(2019GSF109045)

Review on smart highways critical technology

Jianqing WU(),Xiuguang SONG*()   

  1. School of Qilu Transportation, Shandong University, Jinan 250061, Shandong, China
  • Received:2020-05-06 Online:2020-08-20 Published:2020-08-13
  • Contact: Xiuguang SONG E-mail:jianqingwusdu@sdu.edu.cn;songxiuguang@sdu.edu.cn

摘要:

赋予公路工程以智慧,建立智慧公路等新一代“互联网+”设计、建造、管理、监测和运营五位一体系统,是当下土木工程、控制工程、机械工程、交通运输工程和计算机等交叉学科的研究热点问题。围绕智慧公路,针对交通“设、建、管、监、运”环节的关键技术,面向智慧公路全寿命周期,从多功能路面材料、智慧建造与智能监测、无人驾驶、车路协同、物联网技术等5个方面入手,系统阐述国内外相关的研究成果、关键共性技术及未来发展趋势。

关键词: 智慧公路, 智慧建造, 无人驾驶, 车路协同, 物联网

Abstract:

Giving highway engineering "wisdom" and establishing new generation five-in-one system of "Internet+" design, construction, management, monitoring and operation, namely, the smart highway, was the hot issue of the interdisciplinary study of civil engineering, control engineering, mechanical engineering, transportation engineering, and computer science. To comprehensively understand the smart highway, this review focused on the critical technology in the integrated system in full life-cycle of the smart highway as well as systematically investigated the relevant previous efforts, critical common technologies, and future scopes on multi-function pavement material, smart construction, smart detection, autonomous vehicles, connected vehicles, and internet of things technology.

Key words: smart highway, smart construction, autonomous vehicles, connected vehicle, internet of things

中图分类号: 

  • TQ028

图1

多功能路面材料技术发展进程"

图2

智能建造与智能监测技术关系图"

图3

国外无人驾驶汽车发展历程"

图4

国内无人驾驶汽车发展历程"

图5

3D目标检测技术发展历程[93]"

图6

我国车路协同系统发展历程"

图7

车路协同关键技术"

图8

物联网技术应用领域"

1 陈宇, 韦万峰, 周胜波, 等. 基于流变性评价沥青自愈合性能研究[J]. 新型建筑材料, 2020, 47 (2): 27- 31.
CHEN Yu , WEI Wanfeng , ZHOU Shengbo , et al. Research on self-healing performance evaluation of asphalt based on rheology[J]. New Building Materials, 2020, 47 (2): 27- 31.
2 徐亚, 吴丹. 沥青混合料自愈合性能研究综述[J]. 科技创新与应用, 2020, (10): 62- 63.
XU Ya , WU Dan . A review of research on self-healing properties of asphalt mixtures[J]. Science and Technology Innovation and Application, 2020, (10): 62- 63.
3 GARCIA A , AUSTIN C J , JELFS J . Mechanical properties of asphalt mixture containing sunflower oil capsules[J]. Journal of Cleaner Production, 2016, 118 (1): 124- 132.
4 TABAKOVIC' A , POST W , CANTERO D , et al. The reinforcement and healing of asphalt mastic mixtures by rejuvenator encapsulation in alginate compartmented fibres[J]. Smart Materials and Structures, 2016, 25 (8): 1- 12.
5 AGZENAI Y , POZUELO J , SANZ J , et al. Advanced self-healing asphalt composites in the pavement performance field: mechanisms at the nano level and new repairing methodologies[J]. Recent Pat Nanotechnol, 2015, 9 (1): 43- 50.
doi: 10.2174/1872208309666141205125017
6 GARCÍA Á , SCHLANGEN E , VAN DE VEN M , et al. Preparation of capsules containing rejuvenators for their use in asphalt concrete[J]. Journal of Hazardous Materials, 2010, 184 (1): 603- 611.
7 GARCIA A , JELFS J , AUSTIN C J . Internal asphalt mixture rejuvenation using capsules[J]. Construction and Building Materials, 2015, 101 (1): 309- 316.
8 MICAELO R , AL-MANSOORI T , GARCIA A . Study of the mechanical properties and self-healing ability of asphalt mixture containing calcium-alginate capsules[J]. Construction and Building Materials, 2016, 123 (1): 734- 744.
9 SU J , SCHLANGEN E , QIU J . Design and construction of microcapsules containing rejuvenator for asphalt[J]. Powder Technology, 2013, 235 (1): 563- 571.
10 SU J , QIU J , SCHLANGEN E , et al. Investigation the possibility of a new approach of using microcapsules containing waste cooking oil: in situ rejuvenation for aged bitumen[J]. Construction and Building Materials, 2015, 74 (1): 83- 92.
11 SUN D , HU J , ZHU X . Size optimization and self-healing evaluation of microcapsules in asphalt binder[J]. Colloid & Polymer Science, 2015, 293 (2): 3505- 3516.
12 LI R , ZHOU T , PEI J . Design, preparation and properties of microcapsules containing rejuvenator for asphalt[J]. Construction and Building Materials, 2015, 99 (1): 143- 149.
13 肖艺成.路用自修复材料的制备及性能研究[D].西安:长安大学, 2014.
XIAO Yicheng. Preparation and properties of self-healing materials for road use[D]. Xi'an: Changan Univer-sity, 2014.
14 LIU Q , GARCÍA Á , SCHLANGEN E , et al. Induction healing of asphalt mastic and porous asphalt concrete[J]. Construction and Building Materials, 2011, 25 (9): 3746- 3752.
doi: 10.1016/j.conbuildmat.2011.04.016
15 LIU Q , SCHLANGEN E , GARCÍA Á , et al. Induction heating of electrically conductive porous asphalt concrete[J]. Construction and Building Materials, 2010, 24 (7): 1207- 1213.
doi: 10.1016/j.conbuildmat.2009.12.019
16 DAI Q , WANG Z , HASAN M R M . Investigation of induction healing effects on electrically conductive asphalt mastic and asphalt concrete beams through fracture-healing tests[J]. Construction and Building Materials, 2013, 49 (12): 729- 737.
17 GARCÍA A , NORAMBUENA-CONTRERAS J , PARTL M N . A parametric study on the influence of steel wool fibers in dense asphalt concrete[J]. Materials & Structures, 2014, 47 (9): 1559- 1571.
18 GARCÍA Á , SCHLANGEN E , VAN DE VEN M , et al. A simple model to define induction heating in asphalt mastic[J]. Construction and Building Materials, 2012, 31 (1): 38- 46.
19 GARCÍA Á , SCHLANGEN E , VAN DE VEN M , et al. Optimization of composition and mixing process of a self-healing porous asphalt[J]. Construction and Building Materials, 2012, 30 (1): 59- 65.
20 GARCÍA A , NORAMBUENA-CONTRERAS J , PARTL M N , et al. Uniformity and mechanical properties of dense asphalt concrete with steel wool fibers[J]. Construction and Building Materials, 2013, 43 (1): 107- 117.
21 LIU Q , WU S , SCHLANGEN E . Induction heating of asphalt mastic for crack control[J]. Construction and Building Materials, 2013, 41 (1): 345- 351.
22 YANG X , DAI Q , YOU Z , et al. Integrated experimental-numerical approach for etimating asphalt mixture induction healing level through discrete element modeling of a single-edge notched beam test[J]. Journal of Materials in Civil Engineering, 2015, 27 (9): 1- 9.
23 GÓMEZ-MEIJIDE B , AJAM H , LASTRA-GONZÁLEZ P , et al. Effect of air voids content on asphalt self-healing via induction and infrared heating[J]. Construction and Building Materials, 2016, 126 (1): 957- 966.
24 PAMULAPATI Y , ELSEIFI M A , COOPER S B , et al. Evaluation of self-healing of asphalt concrete through induction heating and metallic fibers[J]. Construction and Building Materials, 2017, 146 (1): 66- 75.
25 何亮, 李冠男, 熊汉江, 等. 钢砂SBS改性沥青混凝土裂纹的感应加热自修复性能[J]. 交通运输工程学报, 2018, 18 (3): 11- 18.
HE Liang , LI Guannan , XIONG Hanjiang , et al. Self-healing properties of steel sand SBS modified asphalt concrete cracks by induction heating[J]. Journal of Transportation Engineering, 2018, 18 (3): 11- 18.
26 叶勇, 李斌, 刘全涛. 沥青混凝土电磁感应加热梯度愈合行为研究[J]. 武汉理工大学学报(交通科学与工程版), 2018, 42 (1): 26- 30.
YE Yong , LI Bin , LIU Quantao . Study on the gradient healing behavior of electromagnetic induction heating of asphalt concrete[J]. Journal of Wuhan University of Technology(Transportation Science and Engineering Edition), 2018, 42 (1): 26- 30.
27 MAALEJ M , HASHIDA T , LI V C . Effect of fiber volume fraction on the off-crack-plane fracture energy in strain -hardening engineered cementitious composites[J]. Journal of the American Ceramic Society, 1995, 78 (12): 3369- 3375.
doi: 10.1111/j.1151-2916.1995.tb07979.x
28 YANG E H , YANG Y Z , LI V C . Use of high volumes of fly ash to improve ECC mechanical properties and material greenness[J]. Aci Materials Journal, 2007, 104 (6): 620- 628.
29 SISOMPHON K , COPUROGLU O , KOENDERS E A . Effect of exposure conditions on self healing behavior of strain hardening cementitious composites incorporating various cementitious materials[J]. Construction and Building Materials, 2013, 42 (1): 217- 224.
30 SISOMPHON K , COPUROGLU O , KOENDERS E A . Self-healing of surface cracks in mortars with expansive additive and crystalline additive[J]. Cement and Concrete Composites, 2012, 34 (4): 566- 574.
doi: 10.1016/j.cemconcomp.2012.01.005
31 SISOMPHON K , COPUROGLU O , FRAAIJ A . Application of encapsulated lightweight aggregate impregnated with sodium monof luorophosphate as a self-healing agent in blast furnace slag mortar[J]. Heron, 2011, 56 (1): 13- 32.
32 JONKERS H , THIJSSEN A , MUYZER G , et al. Application of bacteria as self-healing agent for the development of sustainable concrete[J]. Ecological Engineering, 2010, 36 (2): 230- 235.
33 WIKTOR V , JONKERS H . Quantification of crack-healing in novel bacteria-based self-healing concrete[J]. Cement and Concrete Composites, 2011, 33 (7): 763- 770.
doi: 10.1016/j.cemconcomp.2011.03.012
34 王瑞兴, 钱春香, 王剑云. 微生物沉积碳酸钙研究[J]. 东南大学学报(自然科学版), 2005, 35 (增刊1): 191- 195.
WANG Ruixing , QIAN Chunxiang , WANG Jianyun . Research on microbial deposition of calcium carbonate[J]. Journal of Southeast University(Natural Science Edition), 2005, 35 (Suppl.1): 191- 195.
35 WANG J , SOENS H , VERSTRAETE W . Self-healing concrete by use of microencapsulated bacterial spores[J]. Cement and Concrete Research, 2014, 56 (2): 139- 152.
36 SOROUSHIAN P , OSTOWARI K , NOSSONI A , et al. Repair and strengthening of concrete structures through application of corrective posttensioning forces with shape memory alloys[J]. Transportation Research Record, 2001, 1770 (1): 20- 26.
doi: 10.3141/1770-03
37 匡亚川, 欧进萍. 形状记忆合金智能混凝土梁变形特性的研究[J]. 中国铁道科学, 2008, (4): 41- 46.
KUANG Yachuan , OU Jinping . Research on deformation characteristics of shape memory alloy intelligent concrete beam[J]. China Railway Science, 2008, (4): 41- 46.
38 崔迪, 李宏男, 宋钢兵. 形状记忆合金混凝土梁力学性能试验研究[J]. 工程力学, 2010, 27 (2): 117- 123.
CUI Di , LI Hongnan , SONG Gangbing . Experimental study on mechanical properties of shape memory alloy concrete beams[J]. Engineering Mechanics, 2010, 27 (2): 117- 123.
39 孙丽, 陈晓丹, 高倩倩. 配置预应力形状记忆合金丝的混凝土梁修复性能试验研究[J]. 建筑结构学报, 2015, 36 (增刊2): 265- 269.
SUN Li , CHEN Xiaodan , GAO Qianqian . Experimental study on repair performance of concrete beams equipped with prestressed shape memory alloy wires[J]. Journal of Building Structures, 2015, 36 (Suppl.2): 265- 269.
40 王兆芃, 杜顺禹, 杨静宁. SMA对混凝土裂纹修复性能的数值分析[J]. 甘肃科学学报, 2018, 30 (3): 111- 116.
WANG Zhaopeng , DU Shunyu , YANG Jingning . Numerical analysis of concrete crack repair performance with SMA[J]. Journal of Gansu Sciences, 2018, 30 (3): 111- 116.
41 HOC T, CHUNGD D L, 甘永学. 用碳纤维增强锡基复合材料包覆超导体[J]. 复合材料学报, 1989, (3): 71.
HO C T , CHUNG D , GAN Yongxue . Superconductor coated with carbon fiber reinforced tin matrix composites[J]. Journal of Composites, 1989, (3): 71.
42 孙明清, 李卓球, 沈大荣. 炭纤维水泥基复合材料的Seebeck效应[J]. 材料研究学报, 1998, (1): 111- 112.
SUN Mingqing , LI Zhuoqiu , SHEN Darong . Seebeck effect of carbon fiber cement-based composites[J]. Journal of Materials Research, 1998, (1): 111- 112.
43 邓友生, 吴鹏, 李卓球, 等. 水泥基碳纤维智能层检测混凝土梁的试验研究[J]. 科学技术与工程, 2017, 17 (6): 232- 237.
DENG Yousheng , WU Peng , LI Zhuoqiu , et al. Experimental study on the detection of concrete beams with a cement-based carbon fiber intelligent layer[J]. Science Technology and Engineering, 2017, 17 (6): 232- 237.
44 郑华升, 朱四荣, 李卓球. 碳纤维增强塑料(CFRP)力阻效应的研究评述[J]. 材料科学与工程学报, 2017, 35 (6): 1009- 1013.
ZHENG Huasheng , ZHU Sirong , LI Zhuoqiu . Review of the research on the force resistance effect of carbon fiber reinforced plastics(CFRP)[J]. Journal of Materials Science and Engineering, 2017, 35 (6): 1009- 1013.
45 SELVARAJU R K. Characterization of solar roadways via computational and experimental investigations[D]. London, Canada: The University of Western Ontario, 2012.
46 NORTHMORE A B, TIGHE S. Developing innovative roads using solar technologies[C]// Proceedings of the 2012 Annual Conference of the Canadian Society for Civil Engineering. Fredericton, Canda: [s.n.], 2012: 1348-1355.
47 NORTHMORE A, TIGHE S. Innovative pavement design: are solar roads feasible?[C]// Proceedings of the 2012 Conference and Exhibition of the Transportation Association of Canada-Transportation: Innovations and Opportunities. Fredericton, Canda: [s.n.], 2012.
48 蔡良.太阳能空心板块路面结构模型试验研究[D].长沙:长沙理工大学, 2014.
CAI Liang. Model test research on solar hollow plate pavement structure[D]. Changsha: Changsha University of Science and Technology, 2014.
49 张铖坚.基于导光混凝土的太阳能路面空心板块模型制备及性能研究[D].长沙:长沙理工大学, 2017.
ZHANG Chengjian. Preparation and performance research of solar pavement hollow slab model based on light guide concrete[D]. Changsha: Changsha University of Science and Technology, 2017.
50 李子豪.基于透明树脂混凝土的太阳能路面材料与模型制备及性能研究[D].长沙:长沙理工大学, 2018.
LI Zihao. Solar pavement material and model preparation and performance research based on transparent resin concrete[D]. Changsha: Changsha University of Science and Technology, 2018.
51 MA T , YANG H , GU W , et al. Development of walkable photovoltaic floor tiles used for pavement[J]. Energy Conversion & Management, 2019, 183 (3): 764- 771.
52 陈小刚. 降噪透水沥青路面在城市道路中的应用研究[J]. 江西建材, 2017, (9): 216- 217.
CHEN Xiaogang . Application research on noise reduction permeable asphalt pavement in urban roads[J]. Jiangxi Building Materials, 2017, (9): 216- 217.
53 陈德, 韩森, 苏谦, 等. 基于抗滑降噪性能的沥青路面表面构造评价指标[J]. 浙江大学学报(工学版), 2017, 51 (5): 896- 903.
CHEN De , HAN Sen , SU Qian , et al. Evaluation index of asphalt pavement surface structure based on anti-slip and noise reduction performance[J]. Journal of Zhejiang University(Engineering Science), 2017, 51 (5): 896- 903.
54 张可强. 排水降噪路面AR—OGFC在市政道路中的应用[J]. 交通标准化, 2014, 42 (11): 48- 50.
ZHANG Keqiang . Application of drainage and noise reduction road surface AR-OGFC in municipal roads[J]. Transportation Standardization, 2014, 42 (11): 48- 50.
55 和绍君. 基于道路压电能量采集技术的突起路标的可行性研究[J]. 西部交通科技, 2019, (4): 164- 166.
HE Shaojun . Feasibility study of protruding road signs based on road piezoelectric energy harvesting technology[J]. West Transportation Technology, 2019, (4): 164- 166.
56 徐啸尘, 曹东伟, 杨海露, 等. 压电技术在路面能量收集中的应用[J]. 公路交通科技(应用技术版), 2017, 13 (1): 73- 76.
XU Xiaochen , CAO Dongwei , YANG Hailu , et al. Application of piezoelectric technology in pavement energy collection[J]. Highway Transportation Science and Technology(Applied Technology Edition), 2017, 13 (1): 73- 76.
57 郭志东. 自融雪纤维沥青路面在山区公路中的应用研究[J]. 安徽建筑, 2019, 26 (2): 119- 120.
GUO Zhidong . Application study of self-melting snow fiber asphalt pavement in mountain highway[J]. Anhui Architecture, 2019, 26 (2): 119- 120.
58 熊锐, 刘子铭, 王小雯, 等. 超薄盐化物自融雪沥青混合料路用性能研究[J]. 公路, 2016, 61 (12): 236- 240.
XIONG Rui , LIU Ziming , WANG Xiaowen , et al. Research on the road performance of ultra-thin salt compound self-melting snow asphalt mixture[J]. Highway, 2016, 61 (12): 236- 240.
59 姚锡凡, 景轩, 张剑铭, 等. 走向新工业革命的智能制造[J]. 计算机集成制造系统, 2020, 1 (1): 1- 30.
YAO Xifan , JING Xuan , ZHANG Jianming , et al. Intelligent manufacturing towards the new industrial revolution[J]. Computer Integrated Manufacturing System, 2020, 1 (1): 1- 30.
60 OSTERRIEDER P , BUDDE L , FRIEDLI T . The smart factory as a key construct of industry 4.0: a systematic literature review[J]. International Journal of Production Economics, 2020, 221 (1): 1- 10.
61 许娇娥. 探究智能制造与先进数控技术[J]. 科技风, 2020, (3): 20- 21.
XU Jiaoe . Exploring intelligent manufacturing and advanced numerical control technology[J]. Science and Technology, 2020, (3): 20- 21.
62 熊剑, 汤浪洪. 基于BIM云技术的智能建造[J]. 建筑, 2015, (24): 8- 15.
XIONG Jian , TANG Langhong . Intelligent construction based on BIM cloud technology[J]. Architecture, 2015, (24): 8- 15.
63 刘卉卉, 赵福君. BIM云技术的智能建造分析[J]. 住宅与房地产, 2019, (25): 203- 204.
LIU Huihui , Zhao Fujun . Analysis of intelligent construction of BIM cloud technology[J]. Housing and Real Estate, 2019, (25): 203- 204.
64 林鸣, 王青娥, 王孟钧, 等. 港珠澳大桥岛隧工程智能建造探索与实践[J]. 科技进步与对策, 2018, 35 (24): 81- 85.
LIN Ming , WANG Qinge , WANG Mengjun , et al. Exploration and practice of intelligent construction of hong kong-zhuhai-macao bridge island tunnel project[J]. Science and Technology Progress and Countermeasures, 2018, 35 (24): 81- 85.
65 王红卫.智慧建造环境下的重大工程现场管理创新[C]//中国自动化大会摘要集.武汉: [s.n.], 2015: 1-8.
WANG Hongwei. Innovation of on-site management of major projects in a smart construction environment[C]// The China Automation Congress Abstract Collection. Wuhan, China: [s.n.], 2015: 1-8.
66 蔡明, 乐海淳, 曹亚东, 等. 沥青路面智能建造管控体系的研究与实践[J]. 上海建设科技, 2019, (6): 50- 53.
CAI Ming , LE Haichun , CAO Yadong , et al. Research and practice of asphalt pavement intelligent construction management and control system[J]. Shanghai Construction Science and Technology, 2019, (6): 50- 53.
67 蒋小锐, 刘建友, 高宇宇. 京张高铁八达岭长城站智能建造技术[J]. 铁道标准设计, 2020, 64 (1): 28- 33.
JIANG Xiaorui , LIU Jianyou , GAO Yuyu . Intelligent construction technology of Badaling Great Wall station of Beijing-Zhanghai high-speed railway[J]. Railway Standard Design, 2020, 64 (1): 28- 33.
68 李萍. 浅谈高速公路地质灾害监测、预警与决策系统的建设[J]. 安徽建筑, 2010, 17 (6): 160- 162.
LI Ping . On the construction of highway geological disaster monitoring, early warning and decision-making system[J]. Anhui Architecture, 2010, 17 (6): 160- 162.
69 陈岩. 大数据时代对地质灾害监测预警的思考[J]. 中国矿业, 2016, 25 (增刊2): 328- 330.
CHEN Yan . Reflections on monitoring and early warning of geological hazards in the era of big data[J]. China Mining Industry, 2016, 25 (Suppl.2): 328- 330.
70 杨祥妹, 王健, 王翔. 智能报警监测系统在高速公路收费中的应用[J]. 现代交通技术, 2017, 14 (5): 82- 84.
YANG Xiangmei , WANG Jian , WANG Xiang . Application of intelligent alarm monitoring system in highway toll collection[J]. Modern Transportation Technology, 2017, 14 (5): 82- 84.
71 阎宗岭, 柴贺军, 黄河. 基于RFID的公路危岩智能安全监测与现场报警系统[J]. 公路, 2017, 62 (6): 23- 27.
YAN Zongling , CHAI Hejun , HUANG He . RFID-based intelligent safety monitoring and on-site alarm system for highway dangerous rock[J]. Highway, 2017, 62 (6): 23- 27.
72 李养军, 彭自强, 吴龙彪, 等. 基于复合传感与局域自组网的公路边坡智能实时监测平台设计[J]. 铁道建筑技术, 2019, (8): 23- 28.
LI Yangjun , PENG Ziqiang , WU Longbiao , et al. Design of an intelligent real-time monitoring platform for highway slopes based on composite sensing and local ad hoc network[J]. Railway Construction Technology, 2019, (8): 23- 28.
73 肖德广, 梁林亮, 郭君宇, 等. 高速公路外场监控核心设备智能监测系统研究[J]. 交通建设与管理, 2019, (4): 101- 102.
XIAO Deguang , LIANG Linliang , GUO Junyu , et al. Research on the intelligent monitoring system of core equipment for highway outfield monitoring[J]. Transportation Construction and Management, 2019, (4): 101- 102.
74 刘博. 高速公路智能监测预警机器人系统研究[J]. 机电信息, 2019, (33): 52- 53.
LIU Bo . Research on Intelligent Monitoring and early warning robot system of expressway[J]. Electromechanical Information, 2019, (33): 52- 53.
75 王身宁, 孙发军, 赵文秀, 等. 公路桥梁智能监测探究[J]. 工程技术研究, 2019, 4 (18): 100- 101.
WANG Shenning , SUN Fajun , ZHAO Wenxiu , et al. Research on intelligent monitoring of highway bridges[J]. Engineering Technology Research, 2019, 4 (18): 100- 101.
76 田红保, 王强. 基于智慧物联的地质灾害易发区监测预警系统研究[J]. 国土资源信息化, 2015, (4): 43- 46.
TIAN Hongbao , WANG Qiang . Research on the monitoring and early warning system of geological hazard prone areas based on the intelligent internet of things[J]. Land and Resources Informationization, 2015, (4): 43- 46.
77 王浩永. 浅谈地质灾害监测中的BOTDR技术[J]. 建材与装饰, 2011, (4): 413- 415.
WANG Haoyong . Talking about BOTDR technology in geological disaster monitoring[J]. Building Materials and Decorations, 2011, (4): 413- 415.
78 匡薇, 孙卫东, 常玲, 等. 合成孔径雷达遥感地质应用综述[J]. 西部资源, 2020, (2): 141- 143.
KUANG Wei , SUN Weidong , CHANG Ling , et al. A review of synthetic aperture radar remote sensing geological applications[J]. West China Resources, 2020, (2): 141- 143.
79 康义凯. 机载LiDAR技术在地质灾害监测中的应用研究[J]. 测绘与空间地理信息, 2017, 40 (9): 117- 119.
KANG Yikai . Application study of airborne LiDAR technology in geological hazard monitoring[J]. Surveying and Mapping and Spatial Geographic Information, 2017, 40 (9): 117- 119.
80 潘福全, 亓荣杰, 张璇, 等. 无人驾驶汽车研究综述与发展展望[J]. 科技创新与应用, 2017, (2): 27- 28.
PAN Fuquan , QI Rongjie , ZHANG Xuan , et al. Review and development prospect of driverless car research[J]. Science and Technology Innovation and Application, 2017, (2): 27- 28.
81 BELLAMY D , PRAVICA L . Assessing the impact of driverless haul trucks in Australian surface mining[J]. Resources Policy, 2011, 36 (2): 149- 158.
doi: 10.1016/j.resourpol.2010.09.002
82 WINSTION C , MANNERING F . Implementing techn-ology to improve public highway performance: a leapfrog technology from the private sector is going to be necessary[J]. Economics of Transportation, 2014, 3 (2): 158- 165.
83 程加园, 朱定见. 汽车自动驾驶系统的研究[J]. 装备制造, 2010, (1): 151- 160.
CHENG Jiayuan , ZHU Dingjian . Research on autonomous driving system[J]. Equipment Manufacturing, 2010, (1): 151- 160.
84 余振刚,张婧,牟晴.国内外无人驾驶汽车发展现状及我国发展对策建议[EB/OL]. (2016-05-19)[2020-03-05]. http://www.paper.edu.cn/releasepaper/content/201605-673.
85 陈龙.城市环境下无人驾驶智能车感知系统若干关键技术研究[D].武汉:武汉大学, 2013.
CHEN Long. Research on some key technologies of driverless smart car perception system in urban environment[D]. Wuhan: Wuhan University, 2013.
86 辛煜.无人驾驶车辆运动障碍物检测、预测和避撞方法研究[D].合肥:中国科学技术大学, 2014.
XIN Yu. Research on detection, prediction and collision avoidance methods of moving obstacles for unmanned vehicles[D]. Hefei: University of Science and Technology of China, 2014.
87 郭敏. 为什么要发展无人驾驶车辆?[J]. 中国公路, 2020, (1): 38- 41.
GUO Min . Why develop driverless vehicles?[J]. China Highway, 2020, (1): 38- 41.
88 林一平. 不断创新发展的现代无人驾驶汽车[J]. 专用汽车, 2003, (1): 12- 14.
LIN Yiping . Continuously developing and developing modern driverless cars[J]. Special Purpose Vehicles, 2003, (1): 12- 14.
89 张贤启, 余有晟, 刘俊才. 无人驾驶汽车的发展及可行性[J]. 山东工业技术, 2015, (4): 50- 51.
ZHANG Xianqi , YU Yousheng , LIU Juncai . Development and feasibility of driverless cars[J]. Shandong Industrial Technology, 2015, (4): 50- 51.
90 冯学强, 张良旭, 刘志宗. 无人驾驶汽车的发展综述[J]. 山东工业技术, 2015, (5): 51- 52.
FENG Xueqiang , ZHANG Liangxu , LIU Zhizong . Overview of the development of driverless cars[J]. Shandong Industrial Technology, 2015, (5): 51- 52.
91 季一木, 陈治宇, 田鹏浩, 等. 无人驾驶中3D目标检测方法研究综述[J]. 南京邮电大学学报(自然科学版), 2019, 39 (4): 72- 79.
JI Yimu , CHEN Zhiyu , TIAN Penghao , et al. Review of 3D target detection methods in unmanned driving[J]. Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition), 2019, 39 (4): 72- 79.
92 王世峰, 戴祥, 徐宁, 等. 无人驾驶汽车环境感知技术综述[J]. 长春理工大学学报(自然科学版), 2017, 40 (1): 1- 6.
WANG Shifeng , DAI Xiang , XU Ning , et al. Overview of driverless car environment perception technology[J]. Journal of Changchun University of Science and Technology(Natural Science Edition), 2017, 40 (1): 1- 6.
93 李永丹, 马天力, 陈超波, 等. 无人驾驶车辆路径规划算法综述[J]. 国外电子测量技术, 2019, 38 (6): 72- 79.
LI Yongdan , MA Tianli , CHEN Chaobo , et al. Overview of unmanned vehicle path planning algorithms[J]. Foreign Electronic Measurement Technology, 2019, 38 (6): 72- 79.
94 陈超, 吕植勇, 付姗姗, 等. 国内外车路协同系统发展现状综述[J]. 交通信息与安全, 2011, 29 (1): 102- 105.
CHEN Chao , LÜ Zhiyong , FU Shanshan , et al. Overview of the development status of vehicle and road cooperative systems at home and abroad[J]. Transportation Information and Safety, 2011, 29 (1): 102- 105.
95 庞剑, 贺岩松, 左曙光, 等. 中国汽车工程学术研究综述·2017[J]. 中国公路学报, 2017, 30 (6): 1- 197.
PANG Jian , HE Yansong , ZUO Shuguang , et al. Academic review of China automotive engineering·2017[J]. China Journal of Highway and Transport, 2017, 30 (6): 1- 197.
96 JIA D , LU K , WANG J . A disturbance-adaptive design for VANET-enabled vehicle platoon[J]. IEEE Transactions on Vehicular Technology, 2014, 63 (2): 527- 539.
97 HYEONMI K . Variable signal progression bands for transit vehicles under dwell time uncertainty and traffic queues[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (1): 109- 122.
98 TIEN T L , GRAHAM C , MARK W , et al. Coordinated transit signal priority model considering stochastic bus arrival time[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (4): 1269- 1277.
99 ZHAO J , XIZHAO Z . Improving the operational efficiency of buses with dynamic use of exclusive bus lane at isolated intersections[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (2): 642- 653.
100 HE X , LIU H X , LIU X . Optimal vehicle speed trajectory on a signalized arterial with consideration of queue[J]. Transportation Research Part C: Emerging Technologies, 2015, 61 (1): 106- 120.
101 YANG H , RAKHA H , ALA M V . Eco-cooperative adaptive cruise control at signalized intersections considering queue effects[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18 (6): 1575- 1585.
102 CONCEIÇÃO H, DAMAS L, FERREIRA M, et al. Large-scale simulation of V2V environments[C]//Proceedings of the Symposium on Applied Computing. Fortaleza, Brazil: ACM, 2008: 1-6.
103 DE NUNZIO G , GOMES G , CANUDAS-DE-WIT C , et al. Speed advisory and signal offsets control for arterial bandwidth maximization and energy consumption reduction[J]. IEEE Transactions on Control Systems Technology, 2016, 12 (3): 875- 887.
104 HE Q , HEAD K L , DING J . PAMSCOD: Platoon-based arterial multi-modal signal control with online data[J]. Transportation Research Part C: Emerging Technologies, 2012, 20 (1): 164- 184.
doi: 10.1016/j.trc.2011.05.007
105 SAIÁNS-VÁZQUEZ J , ORDÇÑEZ-MORALES E , LÇPEZ-NORES M , et al. Intersection intelligence: supporting urban platooning with virtual traffic lights over virtualized intersection-based routing[J]. Sensors, 2018, 18 (11): 1- 16.
doi: 10.1109/JSEN.2018.2828616
106 CHEN L , CHANG C . Cooperative traffic control with green wave coordination for multiple intersections based on the internet of vehicles[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2016, 47 (7): 1- 15.
107 XU B , JEFF B X , YOUGANG B , et al. Cooperative method of traffic signal optimization and speed control of connected vehicles at isolated intersections[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (4): 1390- 1403.
doi: 10.1109/TITS.2018.2849029
108 BELKHOUCHE F . Collaboration and optimal conflict resolution at an unsignalized intersection[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (6): 2301- 2312.
doi: 10.1109/TITS.2018.2867256
109 文庭瑞, 储文韬, 李昱昕, 等. STM32的车路协同控制半实物仿真系统[J]. 单片机与嵌入式系统应用, 2019, 19 (12): 65- 68.
WEN Tingrui , CHU Wentao , LI Yuxin , et al. STM32 vehicle-road collaborative control semi-physical simulation system[J]. Microcontrollers and Embedded Systems, 2019, 19 (12): 65- 68.
110 陈新海, 祖晖, 王博思. 面向车路协同的智慧路侧系统设计[J]. 交通与运输, 2019, 35 (6): 62- 65.
CHEN Xinhai , ZU Hui , WANG Bosi . Design of intelligent roadside system for vehicle-road cooperation[J]. Transportation and Transportation, 2019, 35 (6): 62- 65.
111 LO N , TSAI J . An efficient conditional privacy-preserving authentication scheme for vehicular sensor networks without pairings[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (5): 1319- 1328.
doi: 10.1109/TITS.2015.2502322
112 李敏,王少飞,付建胜.基于智能车路协同技术的应用业务通信需求分析综述[C]// 2017世界交通运输大会论文集.北京: [s.n.], 2017: 1-14.
LI Min, WANG Shaofei, FU Jiansheng. Overview of analysis of application business communication needs based on intelligent vehicle-road collaboration technology[C]//World Transport Convention. Beijing: [s.n.], 2017: 1-14.
113 马晓威, 范博, 何佳, 等. 基于车路协同多业务优先级的车载通信退避算法[J]. 交通运输研究, 2019, 5 (4): 76- 88.
MA Xiaowei , FAN Bo , HE Jia , et al. Vehicle-based communication backoff algorithm based on vehicle-road cooperative multi-service priority[J]. Transportation Research, 2019, 5 (4): 76- 88.
114 李原. 毫米波雷达在车路协同系统中的应用研究[J]. 工业控制计算机, 2020, 33 (1): 44- 46.
LI Yuan . Application research of millimeter wave radar in vehicle-road collaboration system[J]. Industrial Control Computer, 2020, 33 (1): 44- 46.
115 程显毅, 施佺, 朱建新, 等. 大数据环境下的车路人协同控制模型VID[J]. 计算机科学, 2019, 46 (增刊2): 185- 188.
CHENG Xianyi , SHI Ye , ZHU Jianxin , et al. Vehicle-pedestrian collaborative control model VID in big data environment[J]. Computer Science, 2019, 46 (Suppl.2): 185- 188.
116 陈泽, 蔡明懋, 高杰, 等. 车路协同环境下的斑马线安全警示系统[J]. 青岛理工大学学报, 2019, 40 (5): 106- 112.
CHEN Ze , CAI Mingmao , GAO Jie , et al. Zebra crossing safety warning system under vehicle-road cooperative environment[J]. Journal of Qingdao Technological University, 2019, 40 (5): 106- 112.
117 陈新海, 祖晖, 王博思, 等. 车路协同车载高精定位服务系统设计[J]. 激光杂志, 2019, 40 (11): 109- 113.
CHEN Xinhai , ZU Hui , WANG Bosi , et al. Design of vehicle-road cooperative vehicle-mounted high-precision positioning service system[J]. Laser Magazine, 2019, 40 (11): 109- 113.
118 张蕾, 朱雪田, 李金艳. 5G网络切片在车路协同系统中的应用研究[J]. 电子技术应用, 2020, 46 (1): 12- 16.
ZHANG Lei , ZHU Xuetian , LI Jinyan . Application research of 5G network slicing in vehicle-road cooperation system[J]. Electronic Technology Application, 2020, 46 (1): 12- 16.
119 李理, 郭卫芳. 5G车路协同安全风险研究[J]. 信息通信, 2019, (12): 38- 39.
LI Li , GUO Weifang . Research on 5G vehicle-road collaborative security risk[J]. Information Communication, 2019, (12): 38- 39.
120 伍永豪, 余正红, 李聪. 基于物联网的高速公路安全预警系统研究[J]. 计算机与数字工程, 2014, 42 (2): 280- 285.
WU Yonghao , YU Zhenghong , LI Cong . Research on highway safety early warning system based on internet of things[J]. Computer and Digital Engineering, 2014, 42 (2): 280- 285.
121 周超. 基于物联网的高速公路边坡实时监测系统设计[J]. 人民交通, 2019, (7): 81- 82.
ZHOU Chao . Design of a real-time monitoring system for highway slopes based on internet of things[J]. People's Transportation, 2019, (7): 81- 82.
122 薛长龙, 张代新. 基于物联网技术的高速公路边坡监测预警系统研究[J]. 公路交通科技(应用技术版), 2019, 15 (11): 64- 67.
XUE Changlong , ZHANG Daixin . Research on highway slope monitoring and early warning system based on internet of things technology[J]. Highway Transportation Science and Technology(Applied Technology Edition), 2019, 15 (11): 64- 67.
123 时恒心, 孟强, 刘梦依, 等. 基于物联网的高速公路主动发光诱导系统设计[J]. 计算机技术与发展, 2020, (3): 1- 11.
SHI Hengxin , MENG Qiang , LIU Mengyi , et al. Design of active light emission induction system of expressway based on internet of things[J]. Computer Technology and Development, 2020, (3): 1- 11.
124 黄奕辉, 李旭辉, 谢帮华. 基于物联网的公路养护施工安全智能监管系统应用研究[J]. 公路, 2019, 64 (12): 282- 285.
HUANG Yihui , LI Xuhui , XIE Banghua . Application research of intelligent maintenance supervision system for highway maintenance construction safety based on internet of things[J]. Highway, 2019, 64 (12): 282- 285.
125 杨翠, 王少飞, 胡国辉, 等. 基于物联网技术的智慧型公路隧道照明系统[J]. 公路, 2015, 60 (5): 153- 157.
YANG Cui , WANG Shaofei , HU Guohui , et al. Intelligent highway tunnel lighting system based on internet of things technology[J]. Highway, 2015, 60 (5): 153- 157.
126 王开然. 基于"大数据+物联网"技术的高速公路智能调度平台建设[J]. 机电信息, 2019, (20): 121- 122.
WANG Kairan . Construction of expressway intelligent dispatch platform based on "big data + internet of things" technology[J]. Electromechanical Information, 2019, (20): 121- 122.
127 殷亚君. 大数据时代基于物联网技术的智慧高速公路研究[J]. 中国建材科技, 2019, 28 (4): 112- 115.
YIN Yajun . Research on smart highway based on internet of things technology in the era of big data[J]. China Building Materials Science and Technology, 2019, 28 (4): 112- 115.
128 洪泽, 洪锋, 陈振娇. 针对车联网信息安全的加密引擎芯片设计[J]. 网络安全技术与应用, 2020, (2): 36- 38.
HONG Ze , HONG Feng , CHEN Zhenjiao . Design of encryption engine chip for information security of Internet of vehicles[J]. Network Security Technology and Application, 2020, (2): 36- 38.
129 常玲, 赵蓓, 薛姗, 等. 车联网信息安全威胁分析及防护思路[J]. 移动通信, 2019, 43 (11): 47- 50.
CHANG Ling , ZHAO Bei , XUE Shan , et al. Analysis of internet of vehicles information security threats and protection ideas[J]. Mobile Communication, 2019, 43 (11): 47- 50.
130 邓华丽. 探究混合加密算法在物联网信息安全传输系统中的应用[J]. 网络安全技术与应用, 2016, (11): 63- 64.
DENG Huali . Explore the application of hybrid encryption algorithm in the information transmission system of Internet of Things[J]. Network Security Technology and Application, 2016, (11): 63- 64.
131 PARUCHURI V, DURRESI A. PAAVE: protocol for anonymous authentication in vehicular networks using smart cards[C]//Global Telecommunications Conference. Houston, USA: IEEE, 2011: 55-62.
132 ZHANG C, LIN X, LU R, et al. RAISE: an efficient RSU-aided message authentication scheme in vehicular communication networks[C]//International Conference on Communication. Beijing: IEEE, 2008: 19-23.
133 CHIM T , YIU S , HUI L C , et al. SPECS: secure and privacy enhancing communications schemes for vanets[J]. Ad Hoc Networks, 2011, 9 (2): 189- 203.
134 HORNG S , TZENG S , PAN Y , et al. B-SPECS+: batch verification for secure pseudonymous authentication in vanet[J]. IEEE Transactions on Information Forensics & Security, 2013, 8 (11): 1860- 1875.
135 SHIM K A . An efficient conditional privacy-preserving authentication scheme for vehicular sensor networks[J]. IEEE Transactions on Vehicular Technology, 2012, 61 (4): 1874- 1883.
doi: 10.1109/TVT.2012.2186992
136 KUMAR P , KUMARI S , SHARMA V , et al. A certificateless aggregate signature scheme for healthcare wireless sensor network[J]. Sustainable Computing Informatics & Systems, 2018, 18 (1): 80- 89.
[1] 刘冬兰,刘新,陈剑飞,王文婷,张昊,马雷,李冬. 基于物理不可克隆函数的电网NB-IoT端到端安全加密方案[J]. 山东大学学报 (工学版), 2020, 50(1): 63-71.
[2] 黄忠, 葛连升. 基于CoAP的物联网Web服务统一访问方法[J]. 山东大学学报(工学版), 2014, 44(4): 16-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[2] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[3] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[4] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[5] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[6] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[7] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .
[8] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[9] 刘文亮,朱维红,陈涤,张泓泉. 基于雷达图像的运动目标形态检测及跟踪技术[J]. 山东大学学报(工学版), 2010, 40(3): 31 -36 .
[10] 张英,郎咏梅,赵玉晓,张鉴达,乔鹏,李善评 . 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36(4): 56 -59 .