山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (5): 112-118.doi: 10.6040/j.issn.1672-3961.0.2018.356
摘要:
针对传统井下定位成本高、工作危险系数大的问题,提出一种基于信道状态信息(channel state information, CSI)的轻量级自适应井下定位(lightweight self-adaptive underground positioning algorithm, LSA)方法。LSA方法以细粒度的CSI替代粗粒度的接收信号强度(received signal strength indicator, RSSI)来获得更高的定位精度,采用逆傅里叶变换将原始CSI数据转换为信道脉冲响应,以此选取视距信号,并通过构建CSI视距信号衰减模型实现轻量级的精确测距;基于井下现有WiFi网络中的访问接入点(access points, APs)位置和井下巷道特征,计算目标相对AP的方向,根据方向和测距结果完成定位。该方法能够自适应于AP在巷道中的任意位置部署,并利用拐角识别优化算法进一步提高定位的精度。试验结果表明,该方法能够使得定位中位数误差达到0.53 m,且无需在井下单独部署任何定位系统,性能明显优于已提出的CDPF、FILA等其他定位算法。
中图分类号:
1 | SALAZAR A S, AGUILAR L, LICEA G. Estimating indoor zone-level location using Wi-Fi RSSI fingerprinting based on fuzzy inference system[C]//International Conference on Mechatronics, Electronics and Automotive Engineering. Morelos, Mexico: IEEE, 2013: 178-184. |
2 | ZAFARI F, PAPAPANAGIOTOU I, HACKER T J. A novel Bayesian filtering based algorithm for RSSI-based indoor localization[C]//IEEE International Conference on Communications. Kansas City, USA: IEEE, 2018: 79-84. |
3 | SHUE S, CONRAD J M. Reducing the effect of signal multipath fading in RSSI-distance estimation using Kalman filters[C]//Communications & Networking Symposium. San Diego, USA: Society for Computer Simulation International, 2016: 5. |
4 | XUE W , HUA X , LI Q , et al. A new weighted algorithm based on the uneven spatial resolution of RSSI for indoor localization[J]. IEEE Access, 2018, 6 (99): 26588- 26595. |
5 | 曾碧, 毛勤. 改进的室内三维模糊位置指纹定位算法[J]. 山东大学学报(工学版), 2015, 45 (3): 22- 27. |
ZENG Bi , MAO Qin . Improved indoor 3-D fuzzy position fingerprint localization algorithm[J]. Journal of Shandong University (Engineering Science), 2015, 45 (3): 22- 27. | |
6 | IEEE. Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: policies and procedures for operation in the TV bands: ANSI/IEEE Std 802.11v[S]. New York, USA: LAN/MAN Standards Committee of the IEEE Computer Society Std., 2011. |
7 |
HALPERIN D , HU W , SHETH A , et al. Tool release: gathering 802.11n traces with channel state information[J]. Acm Sigcomm Computer Communication Review, 2011, 41 (1): 53- 53.
doi: 10.1145/1925861.1925870 |
8 | LIU Y , DRAPER S C , SAYEED A M . A secret key generation system based on multipath channel randomness: RSSI vs CSSI[J]. Information Forensics & Security IEEE Transactions on, 2011, (5): 1484- 1497. |
9 |
SHI S , SIGG S , CHEN L , et al. Accurate location tracking from CSI-based passive device-free probabilistic fingerprinting[J]. IEEE Transactions on Vehicular Technology, 2018, 67 (6): 5217- 5230.
doi: 10.1109/TVT.2018.2810307 |
10 | LIAO L , ZAKHAROV Y , MITCHELL P D . Underwater localization based on grid computation and its application to transmit beamforming in multiuser uwa communications[J]. IEEE Access, 2018, (6): 4297- 4307. |
11 | WANG X , GAO L , MAO S , et al. CSI-based fingerprinting for indoor localization: a deep learning approach[J]. IEEE Transactions on Vehicular Technology, 2017, 66 (1): 763- 776. |
12 | WU K , XIAO J , YI Y , et al. FILA: fine-grained indoor localization[J]. Proceedings-IEEE INFOCOM, 2012, 131 (5): 2210- 2218. |
13 | WU K , XIAO J , YI Y , et al. CSI-based indoor localization[J]. IEEE Transactions on Parallel & Distributed Systems, 2013, 24 (7): 1300- 1309. |
14 |
SONG Q , GUO S , LIU X , et al. CSI amplitude fingerprinting-based NB-IoT indoor localization[J]. IEEE Internet of Things Journal, 2018, 5 (3): 1494- 1504.
doi: 10.1109/JIOT.2017.2782479 |
15 | SEN S, CHOUDHURY R R, MINKA T. You are facing the Mona Lisa: spot localization using PHY layer information[C]//International Conference on Mobile Systems, Applications, and Services. New York, USA: ACM, 2012: 183-196. |
16 | 张一衡, 崔琪楣, 陶小峰. 多用户MIMO-OFDM系统低速率CSI反馈方法及信道容量分析[J]. 电子与信息学报, 2009, 31 (9): 2188- 2192. |
ZHANG Yiheng , CUI Qimei , TAO Xiaofeng . Low rate CSI feedback and capacity analysis in multiuser-MIMO-OFDM System[J]. Journal of Electronics & Information Technology, 2009, 31 (9): 2188- 2192. | |
17 | 胡楚锋, 郭淑霞, 李南京, 等. 超视距宽带信号同步测量技术研究[J]. 仪器仪表学报, 2014, (11): 2531- 2537. |
HU Chufeng , GUO Shuxia , LI Nanjing , et al. Synchronous measurement for a wideband signal at non-line-of-sight[J]. Chinese Journal of Scientific Instrument, 2014, (11): 2531- 2537. | |
18 | WANG X, WANG X, MAO S. ResLoc: deep residual sharing learning for indoor localization with CSI tensors[C]//International Symposium on Personal, Indoor, and Mobile Radio Communications. Montreal, Canada: IEEE, 2018. |
19 |
龙保任, 王峰, 利传迈, 等. 基于聚类的组合时间反转算法的CSI指纹室内定位研究[J]. 电视技术, 2018, 42 (11): 58- 63.
doi: 10.3969/j.issn.1671-8658.2018.11.015 |
LONG Baoren , WANG Feng , LI Chuanmai , et al. Research on CSI fingerprint indoor positioning based on clustering-based combined time reversal algorithm[J]. Video Engineering, 2018, 42 (11): 58- 63.
doi: 10.3969/j.issn.1671-8658.2018.11.015 |
|
20 | WANG X , GAO L , MAO S . CSI phase fingerprinting for indoor localization with a deep learning approach[J]. IEEE Internet of Things Journal, 2017, 3 (6): 1113- 1123. |
21 | CHAPRE Y, IGNJATOVIC A, SENEVIRATNE A, et al. CSI-MIMO: Indoor Wi-Fi fingerprinting system[C]//Local Computer Networks. Edmonton, Canada: IEEE, 2014: 202-209. |
22 | HALPERIN D, HU W, SHETH A, et al. Predictable 802.11 packet delivery from wireless channel measurements[C]//ACM SIGCOMM 2010 Conference. New Delhi, India: ACM, 2010: 159-170. |
23 | 马德鹏, 杨永杰, 曹吉胜, 等. 基于能量释放的深井巷道断面形状优化[J]. 中南大学学报(自然科学版), 2015, 46 (9): 3354- 3360. |
MA Depeng , YANG Yongjie , CAO Jisheng , et al. Optimization design of cross section shape of deep roadways based on characteristics of energy release[J]. Journal of Central South University(Science and Technology), 2015, 46 (9): 3354- 3360. | |
24 | RAPPAPORT T S . Wireless communications: principles and practice[M]. 2nd ed Upper Saddle River, USA: Prentice Hall, 2001. |
25 | WANG Y, ZHOU Z, WU K. Sensor-free corner shape detection by wireless networks[C]//IEEE International Conference on Parallel and Distributed Systems. Taiwan, China: IEEE, 2015: 306-312. |
[1] | 张继,金翠,王洪元,陈首兵. 基于奇异值分解行人对齐网络的行人重识别[J]. 山东大学学报 (工学版), 2019, 49(5): 91-97. |
[2] | 张宗堂,王森,孙世林. 一种针对不平衡数据分类的集成学习算法[J]. 山东大学学报 (工学版), 2019, 49(4): 8-13. |
[3] | 陈馨菂,李天瑞,杨欢欢. 基于时间序列数据的交互式主题河流可视化[J]. 山东大学学报 (工学版), 2019, 49(4): 29-35, 43. |
[4] | 黄劲潮. 深度残差特征与熵能量优化运动目标跟踪算法[J]. 山东大学学报 (工学版), 2019, 49(4): 14-23. |
[5] | 汪嘉晨,唐向红,陆见光. 轴承故障诊断中特征选取技术[J]. 山东大学学报 (工学版), 2019, 49(2): 80-87, 95. |
[6] | 张红斌,邱蝶蝶,邬任重,朱涛,滑瑾,姬东鸿. 基于极端梯度提升树算法的图像属性标注[J]. 山东大学学报 (工学版), 2019, 49(2): 8-16. |
[7] | 侯霄雄,许新征,朱炯,郭燕燕. 基于AlexNet和集成分类器的乳腺癌计算机辅助诊断方法[J]. 山东大学学报 (工学版), 2019, 49(2): 74-79. |
[8] | 杨煦,陈辉,林游思,屠长河. 飞行蝙蝠标记自动提取与追踪算法[J]. 山东大学学报 (工学版), 2019, 49(2): 67-73. |
[9] | 向润,陈素芬,曾雪强. 基于多重多元回归的人脸年龄估计[J]. 山东大学学报 (工学版), 2019, 49(2): 54-60. |
[10] | 胡云,张舒,李慧,佘侃侃,施珺. 基于信任网络重构的推荐算法[J]. 山东大学学报 (工学版), 2019, 49(2): 42-46. |
[11] | 高明霞,李经纬. 基于word2vec词模型的中文短文本分类方法[J]. 山东大学学报 (工学版), 2019, 49(2): 34-41. |
[12] | 李童,马然,郑鸿鹤,安平,胡翔宇. 基于视频统计特征的差错敏感度模型[J]. 山东大学学报 (工学版), 2019, 49(2): 116-121. |
[13] | 秦军,张远鹏,蒋亦樟,杭文龙. 多代表点自约束的模糊迁移聚类[J]. 山东大学学报 (工学版), 2019, 49(2): 107-115. |
[14] | 李力钊,蔡国永,潘角. 基于C-GRU的微博谣言事件检测方法[J]. 山东大学学报 (工学版), 2019, 49(2): 102-106, 115. |
[15] | 刘世光,王海荣,刘锦. 快速四点一致性点云粗配准算法[J]. 山东大学学报 (工学版), 2019, 49(2): 1-7. |
|