山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (3): 22-31.doi: 10.6040/j.issn.1672-3961.0.2017.418
Bo FANG1,2(),Hongmei CHEN1,2,*()
摘要:
标准果蝇优化算法(fruit fly optimization algorithm, FOA)在迭代寻优的过程中,整个果蝇群体只向最优个体靠近,这导致算法极易陷入局部最优,从而引起早熟收敛的问题。针对该问题,提出一种新的双策略进化果蝇优化算法(a novel double strategies evolutionary fruit fly optimization algorithm, DSEFOA)。提出的一种新的群体分割策略,将果蝇群体动态地划分为精英子群和普通子群;对于精英子群,引入混沌变量引导果蝇个体在其附近搜索食物,优化其局部搜索能力;对于普通子群,引入权重因子改进标准FOA的随机搜索方式,执行全局搜索,加快收敛速度。DSEFOA算法针对不同进化水平的果蝇个体采用不同的策略更新进化,充分地提升了整个群体的寻优搜索能力。8个测试函数的仿真试验结果表明, DSEFOA算法有比标准FOA算法更好的优化性能。
中图分类号:
1 | PAN W T . A new fruit fly optimization algorithm: taking the financial distress model as an example[J]. Knowledge-Based Systems, 2012, 26 (2): 69- 74. |
2 | 潘文超. 果蝇最佳化演算法[M]. 台中,中国: 沧海书局, 2011: 10- 12. |
3 | KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN'95: (IEEE International Conference on Neural Networks). Perth, Australia: IEEE, 1995: 1942-1948. |
4 |
DORIGO M , MANIEZZO V , COLORNI A . Ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics: Part B (Cybernetics), 1996, 26 (1): 29- 41.
doi: 10.1109/3477.484436 |
5 |
潘文超. 应用果蝇优化算法优化广义回归神经网络进行企业经营绩效评估[J]. 太原理工大学学报(社会科学版), 2011, 29 (4): 1- 5.
doi: 10.3969/j.issn.1009-5837.2011.04.002 |
PAN Wenchao . Using fruit fly optimization algorithm optimized general regression neural network to construct the operating performance of enterprises model[J]. Journal of Taiyuan University of Technology(Social Sciences Edition), 2011, 29 (4): 1- 5.
doi: 10.3969/j.issn.1009-5837.2011.04.002 |
|
6 | CAO G H , WU L J . Support vector regression with fruit fly optimization algorithm for seasonal electricity consumption forecasting[J]. Energy, 2016, 115 (1): 734- 745. |
7 | LI M W , GENG J , HAN D F , et al. Ship motion prediction using dynamic seasonal RvSVR with phase space reconstruction and the chaos adaptive efficient FOA[J]. Neurocomputing, 2016, 174 (3): 661- 680. |
8 |
王欣, 杜康, 秦斌, 等. 基于果蝇优化算法的LSSVR干燥速率建模[J]. 控制工程, 2012, 19 (4): 630- 633, 638.
doi: 10.3969/j.issn.1671-7848.2012.04.021 |
WANG Xin , DU Kang , QIN Bin , et al. Drying rate modeling based on FOALSSVR[J]. Control Engineering of China, 2012, 19 (4): 630- 633, 638.
doi: 10.3969/j.issn.1671-7848.2012.04.021 |
|
9 | ZHENG X L , WANG L , WANG S Y . A novel binary fruit fly optimization algorithm for the semiconductor final testing scheduling problem[J]. Knowledge-Based Systems, 2014, 57 (2): 95- 103. |
10 | 韩俊英, 刘成忠. 自适应混沌果蝇优化算法[J]. 计算机应用, 2013, 33 (5): 1313- 1316, 1333. |
HAN Junying , LIU Chengzhong . Adaptive chaos fruit fly optimization algorithm[J]. Journal of Computer Applications, 2013, 33 (5): 1313- 1316, 1333. | |
11 |
韩俊英, 刘成忠, 王联国, 等. 动态双子群协同进化果蝇优化算法[J]. 模式识别与人工智能, 2013, 26 (11): 1057- 1067.
doi: 10.3969/j.issn.1003-6059.2013.11.009 |
HAN Junying , LIU Chengzhong , WANG Lianguo , et al. Dynamic double subgroups cooperative fruit fly optimization algorithm[J]. Pattern Recognition and Artificial Intelligence, 2013, 26 (11): 1057- 1067.
doi: 10.3969/j.issn.1003-6059.2013.11.009 |
|
12 | YUAN X F , DAI X S , ZHAO J Y , et al. On a novel multi-swarm fruit fly optimization algorithm and its application[J]. Applied Mathematics and Computation, 2014, 233 (3): 260- 271. |
13 | MITIC' M , VUKOVIC' N , PETROVIC' M , et al. Chaotic fruit fly optimization algorithm[J]. Knowledge-Based Systems, 2015, 89 (C): 446- 458. |
14 | 韩虎. 果蝇优化算法的分析[J]. 计算机系统应用, 2017, 26 (2): 9- 17. |
HAN Hu . Analysis on fruit fly optimization algorithm[J]. Computer Systems & Applications, 2017, 26 (2): 9- 17. | |
15 |
ZHANG Y W , CUI G M , WU J T , et al. A novel multi-scale cooperative mutation fruit fly optimization algorithm[J]. Knowledge-Based Systems, 2016, 114, 24- 35.
doi: 10.1016/j.knosys.2016.09.027 |
[1] | 赵加敏,冯爱民*,刘学军. 局部密度嵌入的结构单类支持向量机[J]. 山东大学学报(工学版), 2012, 42(4): 13-18. |
|