山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (2): 96-101.doi: 10.6040/j.issn.1672-3961.0.2018.242
董新宇1,2,3(),陈瀚阅1,2,*(),李家国3,孟庆岩3,邢世和1,2,张黎明1,2
Xinyu DONG1,2,3(),Hanyue CHEN1,2,*(),Jiaguo LI3,Qingyan MENG3,Shihe XING1,2,Liming ZHANG1,2
摘要:
针对传统K-means聚类彩色图像分割方法需要人为设定初始分割类别数目、易受噪声干扰等缺陷,提出一种多方法融合非监督彩色图像分割算法。该算法对原始图像进行光谱信息增强处理以提高图像信息提取效率,对K-means聚类引入戴维森堡丁指数(Davies-Bouldin index, DBI)自动化确定最佳分割类别数目,通过图像聚类分析并进行像素标签标记,并结合高斯马尔科夫随机场(Gauss-Markov random field, GMRF)理论对标记图像进行分割,最后使用形态学算子进行后处理完成分割操作。试验结果表明。本研究方法具有一定的鲁棒性,且分割效果更接近真实性。通过对分割结果进行量化评价,进一步说明本研究方法在分割精度和准确性方面更具优势。
中图分类号:
1 | 宋淑娜.基于自适应背景区域选择的图像分割方法[D].江苏科技大学, 2010. |
SONG Shuna. Image segmentation methods based on adaptive background region choice[J]. Jiangsu University of Science and Technology, 2010. | |
2 |
INCETAS MO , DEMIRCI R , YAVUZCAN HG . Automatic segmentation of color images with transitive closure[J]. AEU-Int J Electron C, 2014, 68 (3): 260- 269.
doi: 10.1016/j.aeue.2013.09.001 |
3 |
陈坤, 马燕, 李顺宝. 融合直方图阈值和K-均值的彩色图像分割方法[J]. 计算机工程与应用, 2013, 49 (4): 170- 173.
doi: 10.3778/j.issn.1002-8331.1108-0301 |
CHEN Kun , MA Yan , LI Shunbao . Color image segmentation method by using histogram threshold and K-means[J]. Computer Engineering and Applications, 2013, 49 (4): 170- 173.
doi: 10.3778/j.issn.1002-8331.1108-0301 |
|
4 | 杨家红, 刘杰, 钟坚成, 等. 结合分水岭与自动种子区域生长的彩色图像分割算法[J]. 中国图象图形学报, 2010, 15 (1): 63- 68. |
YANG Jiahong , LIU Jie , ZHONG Jiancheng , et al. A color image segmentation algorithm by integrating watershed with automatic seeded region growing[J]. Journal of Image and Graphics, 2010, 15 (1): 63- 68. | |
5 | 刘战杰, 马儒宁, 邹国平, 等. 一种新的基于区域生长的彩色图像分割算法[J]. 山东大学学报(理学版), 2010, 45 (7): 76- 80. |
LIU Zhanjie , MA Runing , ZOU Guopin , et al. An algorithm for color image segmentation based on region growth[J]. Journal of Shandong University (Natural Science), 2010, 45 (7): 76- 80. | |
6 |
王江涛, 练煜, 石红岩. 结合模糊C均值聚类和边缘检测算法的彩色图像分割[J]. 兰州文理学院学报(自然科学版), 2015, 29 (2): 61- 65.
doi: 10.3969/j.issn.2095-6991.2015.02.015 |
WANG Jiangtao , LIAN Yu , SHI Hongyan . New color image segmentation based on C means clustering and edge detection algorithm[J]. Journal of Lanzhou University of Arts and Science(Nature Sciences), 2015, 29 (2): 61- 65.
doi: 10.3969/j.issn.2095-6991.2015.02.015 |
|
7 | 王学松, 周明全, 樊亚春, 等. 彩色图像色度距离权值的图论分割算法[J]. 中国图象图形学报, 2011, 16 (2): 221- 226. |
WANG Xuesong , ZHOU Mingquan , FAN Yachun , et al. The algorithm of graph cut using HIS weights in color image segmentation[J]. Journal of Image and Graphics, 2011, 16 (2): 221- 226. | |
8 | 李震, 洪添胜, 曾祥业, 等. 基于K-means聚类的柑橘红蜘蛛图像目标识别[J]. 农业工程学报, 2012, 28 (23): 147- 153. |
LI Zhen , HONG Tiansheng , ZENG Xiangye , et al. Citrus red mite image target identification based on K-means clustering[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28 (23): 147- 153. | |
9 |
常竞, 王玲. 一种基于遗传算法的彩色图像分割改进算法[J]. 计算机应用与软件, 2008, (8): 221- 223.
doi: 10.3969/j.issn.1000-386X.2008.08.081 |
CHANG Jing , WANG Ling . An improved method of color image segmentation based on genetic algorithm[J]. Computer Applications and Software, 2008, (8): 221- 223.
doi: 10.3969/j.issn.1000-386X.2008.08.081 |
|
10 | 李冠林, 马占鸿, 黄冲, 等. 基于K-means硬聚类算法的葡萄病害彩色图像分割方法[J]. 农业工程学报, 2010, 26 (增刊2): 32- 37. |
LI Guanlin , MA Zhanhong , HUANG Chong , et al. Segmentation of color image of grape diseases using K-means clustering algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26 (Suppl.2): 32- 37. | |
11 | DUbeyubey S R , DIXIT P , SINGH N , et al. Infected fruit part detection using K-means clustering segmentation technique[J]. International Journal of Interactive Multimedia and Artificial Intelligence, 2013, (2): 65- 72. |
12 | 苗玉彬, 翟鹏. 基于改进FCM的葡萄根系图像分割算法[J]. 中国农机化学报, 2014, 35 (6): 69- 71. |
MIAO Yubin , ZHAI Peng . Grape root image segmentation algorithm based on improved FCM[J]. Journal of Chinese Agricultural Mechanization, 2014, 35 (6): 69- 71. | |
13 | 胡学刚, 段瑶. 基于FCM聚类的自适应彩色图像分割算法[J]. 计算机工程与设计, 2018, 39 (7): 1984- 1989. |
HU Xuegang , DUAN Yao . Adaptive color image segmentation algorithm based on FCM clustering[J]. Computer Engineering and Design, 2018, 39 (7): 1984- 1989. | |
14 |
LEI Tao , JIA Xiaohong , ZHANG Yanning , et al. Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering[J]. IEEE Transactions on Fuzzy Systems, 2018, 26 (5): 3027- 3041.
doi: 10.1109/TFUZZ.2018.2796074 |
15 |
邓睿, 黄敬峰, 王福民. 基于去相关拉伸光谱增强的HJ-1影像水体信息提取方法研究[J]. 光谱学与光谱分析, 2011, 31 (11): 3064- 3068.
doi: 10.3964/j.issn.1000-0593(2011)11-3064-05 |
DENG Rui , HUANG Jingfeng , WANG Fumin . Research on extraction method of water body with DS spectral enhancement based on HJ-1 images[J]. Spectroscopy and Spectral Analysis, 2011, 31 (11): 3064- 3068.
doi: 10.3964/j.issn.1000-0593(2011)11-3064-05 |
|
16 | 冯超.K-means聚类算法的研究[D].大连理工大学, 2007. |
FENG Chao. Research of K-means clustering algorithm[D]. Dalian: Dalian University of Technology, 2007. | |
17 | 胡钦瑞, 肖国强. 基于粗糙集和MRF的彩色图像分割方法[J]. 西南师范大学学报(自然科学版), 2014, 39 (4): 113- 119. |
HU Qinrui , XIAO Guoqiang . On color image segmentation based on rough set and MRF[J]. Journal of Southwest China Normal University(Nature Science Edition), 2014, 39 (4): 113- 119. | |
18 | 詹曙, 梁植程, 谢栋栋. 前列腺磁共振图像分割的反卷积神经网络方法[J]. 中国图象图形学报, 2017, 22 (4): 516- 522. |
ZHAN Shu , LIANG Zhicheng , XIE Dongdong . Deconvolutional neural network for prostate MRI segmentation[J]. Journal of Image and Graphics, 2017, 22 (4): 516- 522. | |
19 |
瞿绍军, 李乔良, 陈明, 等. 融合超像素和伪流算法的交互式图像分割[J]. 小型微型计算机系统, 2018, 39 (12): 2710- 2715.
doi: 10.3969/j.issn.1000-1220.2018.12.027 |
QU Shaojun , LI Qiaoliang , CHEN Ming , et al. Interactive image segmentation algorithm based on superpixel and pseudoflow[J]. Journal of Chinese Computer Systems, 2018, 39 (12): 2710- 2715.
doi: 10.3969/j.issn.1000-1220.2018.12.027 |
[1] | 冯显英 张成梁 杨丙生 李蕾. 基于RGB颜色空间的异性纤维识别检测算法[J]. 山东大学学报(工学版), 2009, 39(5): 68-72. |
|