山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (2): 107-115.doi: 10.6040/j.issn.1672-3961.0.2018.458
Jun QIN1(),Yuanpeng ZHANG1,2,*(),Yizhang JIANG2,Wenlong HANG3
摘要:
以往建立在模糊C均值(fuzzyC-means, FCM)框架下利用源域虚拟簇中心作为迁移知识的迁移聚类算法容易受到离群点和噪声的干扰,且单个簇中心不足以描述簇结构。针对此问题,提出多代表点自约束的模糊迁移聚类算法,该算法引入样本代表权重机制为簇中每个样本分配代表权重来刻画簇结构,这种机制能更好的刻画簇结构,对离群点和噪声有较好的抑制作用;同时利用源域样本,重构目标域簇结构,并以此作为迁移知识进行目标域样本聚类,相对于利用单中心作为迁移知识来说,整体重构后的目标域簇结构所包含的迁移知识量更为丰富。试验结果表明。在人工数据集和真实数据集上,所提出的聚类算法相比对比算法, NMI和ARI最高提升了0.674 5和0.608 4。说明在迁移环境下,以代表点自约束作为知识迁移规则,所提出的聚类算法具有一定的聚类效果。
中图分类号:
1 | 张远鹏, 邓赵红, 钟富礼, 等. 基于代表点评分策略的快速自适应聚类算法[J]. 计算机研究与发展, 2018, 55 (1): 163- 178. |
ZHANG Yuanpeng , DENG Zhaohong , CHUNG Fuli , et al. Fast self-adaptive clustering algorithm based on exemplar score strategy[J]. Journal of Computer Research and Development, 2018, 55 (1): 163- 178. | |
2 | ZHANG Y P , CHUNG F L , WANG S T . Fast exemplar-based clustering by gravity enrichment between data objects[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 1 (1): 1- 14. |
3 | ZHANG Y P , CHUNG F L , WANG S T . Fast reduced set-based exemplar finding and cluster assignment[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 2 (1): 1- 15. |
4 | ZHANG Y P , TIAN F , WU H Q , et al. Brain MRI tissue classification based fuzzy clustering with competitive learning[J]. Journal of Medical Imaging & Health Informatics, 2017, 7 (7): 1654- 1659. |
5 |
TZORTZIS G , LIKAS A . The minmax K-means clustering algorithm[J]. Pattern Recognition, 2014, 47 (7): 2505- 2516.
doi: 10.1016/j.patcog.2014.01.015 |
6 | ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proc of KDD-96. Menlo Park, USA: AAAI Press, 1996: 226-231. |
7 |
DENG Z H , JIANG Y Z , CHOI K S , et al. Knowledge-leverage-based TSK fuzzy system modeling[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24 (8): 1200- 1212.
doi: 10.1109/TNNLS.2013.2253617 |
8 |
蒋亦樟, 邓赵红, 王骏, 等. 基于知识利用的迁移学习一般化增强模糊划分聚类算法[J]. 模式识别与人工智能, 2013, 26 (10): 975- 984.
doi: 10.3969/j.issn.1003-6059.2013.10.010 |
JIANG Yizhang , DENG Zhaohong , WANG Jun , et al. Transfer generalized fuzzy C-means clustering algorithm with improved fuzzy partitions by leveraging knowledge[J]. Pattern Recgonition & Artificial Intelligence, 2013, 26 (10): 975- 984.
doi: 10.3969/j.issn.1003-6059.2013.10.010 |
|
9 | CHEN A G , WANG S T . Knowledge transfer clustering algorithm with privacy protection[J]. Journal of Electronics & Information Technology, 38 (3): 523- 531. |
10 | 杭文龙, 蒋亦樟, 刘解放, 等. 迁移近邻传播聚类算法[J]. 软件学报, 2016, (11): 2796- 2813. |
HANG Wenlong , JIANG Yizhang , LIU Jiefang , et al. Transfer affinity propagation clustering algorithm[J]. Journal of Software, 2016, (11): 2796- 2813. | |
11 |
FREY B J , DUECK D . Clustering by passing messages between data points[J]. Science, 2007, 315 (5814): 972- 976.
doi: 10.1126/science.1136800 |
12 | MEI J P , CHEN L H . Fuzzy relational clustering around medoids: a unified view[J]. Fuzzy Sets and Systems, 2011, 183 (2011): 44- 56. |
13 | MIYAMOTO S, UMAYAHARA K, Fuzzy clustering by quadratic regularization[C]//Processding of the 1998 IEEE International Conference on Fuzzy Systems. Monterey, USA: IEEE Press 1998: 1394-1399. |
14 | YING W H , CHUNG F L , WANG S T . Scaling up synchronization-inspired partitioning clustering[J]. IEEE Transactions on Knowledge & Data Engineering, 2014, 26 (8): 2045- 2057. |
15 | QIAN P J , JIANG Y Z , DENG Z H , et al. Cluster prototypes and fuzzy memberships jointly leveraged cross-domain maximum entropy clustering[J]. IEEE Transactions on Cybernetics, 2015, 46 (1): 181- 193. |
16 | 李素姝, 王士同, 李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47 (3): 34- 42. |
LI Sushu , WANG Shitong , LI Tao . A feature selection method based on LS-SVM and fuzzy supplementary criterion[J]. Journal of Shandong University (Engineering Science), 2017, 47 (3): 34- 42. | |
17 |
CHENG J , SAAD Y . Lanczos vectors versus singular vectors for effective dimension reduction[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21 (8): 1091- 1103.
doi: 10.1109/TKDE.2008.228 |
18 |
MO D , HUANG S . Fractal-based intrinsic dimension estimation and its application in dimensionality reduction[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24 (1): 59- 71.
doi: 10.1109/TKDE.2010.225 |
19 |
YAO J , LIU X , ZHU X , et al. Control of large-scale systems through dimension reduction[J]. IEEE Transactions on Services Computing, 2015, 8 (4): 563- 575.
doi: 10.1109/TSC.2014.2312946 |
20 |
ZHOU Y , PENG J , CHEN C . Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53 (2): 1082- 1095.
doi: 10.1109/TGRS.2014.2333539 |
[1] | 张红斌,邱蝶蝶,邬任重,朱涛,滑瑾,姬东鸿. 基于极端梯度提升树算法的图像属性标注[J]. 山东大学学报 (工学版), 2019, 49(2): 8-16. |
[2] | 李雨鑫,普园媛,徐丹,钱文华,刘和娟. 深度卷积神经网络嵌套fine-tune的图像美感品质评价[J]. 山东大学学报(工学版), 2018, 48(3): 60-66. |
[3] | 沈冀,马志强,李图雅,张力. 面向短文本情感分析的词扩充LDA模型[J]. 山东大学学报(工学版), 2018, 48(3): 120-126. |
[4] | 于立萍1,2,唐焕玲1,2. 基于分类一致性的迁移学习及其在行人检测中的应用[J]. 山东大学学报(工学版), 2013, 43(4): 26-31. |
[5] | 张云霞,崔晓松,邹丽*. 一种基于十八元语言值模糊相似矩阵的聚类方法[J]. 山东大学学报(工学版), 2013, 43(1): 34-40. |
[6] | 陈斌 陈松灿 潘志松 李斌. 异常检测综述[J]. 山东大学学报(工学版), 2009, 39(6): 13-23. |
[7] | 王好芳 吴美 陈文艳. 模糊聚类分析在区域水资源承载能力评价中的应用[J]. 山东大学学报(工学版), 2009, 39(3): 139-143. |
[8] | 牛新生,叶华,王亮 . 彩色图像中的人脸检测方法[J]. 山东大学学报(工学版), 2007, 37(4): 0-0 . |
[9] | 马志强,常发亮,田伟,赵瑶 . 彩色图像中的人脸检测方法[J]. 山东大学学报(工学版), 2007, 37(4): 19-22 . |
[10] | 许延生,刘兴芳 . 模糊聚类迭代模型在水资源承载能力评价中的应用[J]. 山东大学学报(工学版), 2007, 37(3): 100-104 . |
[11] | 王耘,穆勇,刘庆红 . 基于灰关联分析的模糊聚类最优划分判定模型[J]. 山东大学学报(工学版), 2006, 36(2): 86-89 . |
[12] | 李贻斌,李彩虹,阮久宏 . ITS智能车辆横向运动模式空间构造算法研究[J]. 山东大学学报(工学版), 2006, 36(2): 36-40 . |
[13] | 王耘,穆勇,刘庆红 . 基于灰关联分析的模糊聚类最优划分判定模型[J]. 山东大学学报(工学版), 2006, 36(2): 86-89 . |
|