山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (2): 102-106.doi: 10.6040/j.issn.1672-3961.0.2018.189
Lizhao LI1(),Guoyong CAI1,Jiao PAN2
摘要:
提出基于卷积-门控循环单元(convolution-gated recurrent unit, C-GRU)的微博谣言事件检测模型。结合卷积神经网络(convolutional neural networks, CNN)和门控循环单元(gated recurrent unit, GRU)的优点,将微博事件博文句向量化,通过CNN中的卷积层学习微博窗口的特征表示,将微博窗口特征按时间顺序拼接成窗口特征序列,将窗口特征序列输入GRU中学习序列特征表示进行谣言事件检测。在真实数据集上的试验结果表明,相比基于传统机器学习方法、CNN和GRU的谣言检测模型,该模型有更好的谣言识别能力。
中图分类号:
1 | 霍恩比. 牛津高阶英语词典[M]. 9版 北京: 商务印书馆, 2018. |
2 | QAZVINIAN V, ROSENGREN E, RADEV D R, et al. Rumor has it: identifying misinformation in microblogs[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Scotland, UK: Association for Computational Linguistics, 2011: 1589-1599. |
3 | HASSAN A, QAZVINIAN V, RADEV D. What's with the attitude?: identifying sentences with attitude in online discussions[C]//Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Massachusetts, USA: Association for Computational Linguistics. ACM, 2010: 1245-1255. |
4 | MA Ben , LIN Dazhen , CAO Donglin . Content representation for microblog rumor detection[M]. Advances in Computational Intelligence Systems. Lancaster, UK: Springer International Publishing, 2017: 245- 251. |
5 | CASTILLO C, MENDOZA M, POBLET B. Information credibility on Twitter[C]//Proceedings of the 20th international conference on World wide web. Hyderabad, India: ACM, 2011: 675-684. |
6 | MORRIS M R, COUNTS S, ROSEWAY A, et al. Tweeting is believing? understanding microblog credibility perceptions[C]//Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work. Washington, USA: ACM, 2012: 441-450. |
7 |
LIANG Gang , HE Wenbo , XU Chun , et al. Rumor identification in microblogging systems based on users' behavior[J]. IEEE Transactions on Computational Social Systems, 2015, 2 (3): 99- 108.
doi: 10.1109/TCSS.2016.2517458 |
8 | MENDOZA M, POBLETE B, CASTILLO C. Twitter under crisis: can we trust what we RT?[C]//Proceedings of the First Workshop on Social Media Analytics. Washington, USA: ACM, 2010: 71-79. |
9 | CAI Guoyong, BI Mengying, LIU Jianxing. A novel rumor detection method based on labeled cascade propagation tree[C]//Proceedings of the 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery. Changsha, China: ACM, 2017. |
10 | BAO Yuanyuan, YI Chengqi, XUE Yibo, et al. A new rumor propagation model and control strategy on social networks[C]//Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Ontario, Canada: ACM, 2013: 1472-1473. |
11 | KWON S, CHA M, JUNG K, et al. Prominent features of rumor propagation in online social media[C]//Data Mining (ICDM), 2013 IEEE 13th International Conference. Dallas, TX, USA: IEEE, 2013: 1103-1108. |
12 | MA Jing, GAO Wei, WEI Zhongyu, et al. Detect rumors using time series of social context information on microblogging websites[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. Melbourne, Australia: ACM, 2015: 1751-1754. |
13 | 毛二松, 陈刚, 刘欣, 等. 基于深层特征和集成分类器的微博谣言检测研究[J]. 计算机应用研究, 2016, (11): 3369- 3373. |
MAO Ersong , CHEN Gang , LIU Xin , et al. Research on detecting micro-blog rumors based on deep features and ensemble classifier[J]. Application Research of Computers, 2016, (11): 3369- 3373. | |
14 | MA Jing, GAO Wei, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York, USA: AAAI Press, 2016: 3818-3824. |
15 | CHEN Tong, WU Lin, LI Xue, et al. Call attention to rumors: deep attention based recurrent neural networks for early rumor detection[J]. arXiv Preprint, 2017. https://arxiv.org/pdf/1704.05973.pdf |
16 | RUCHANSKY N, SEO S, Liu Y. CSI: a hybrid deep model for fake news[C]. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore: ACM, 2017: 797-806. |
17 | 刘政, 卫志华, 张韧弦. 基于卷积神经网络的谣言检测[J]. 计算机应用, 2017, 37 (11): 3053- 3056. |
LIU Zheng , WEI Zhihua , ZHANG Renxian . Rumor detection based on convolution neural network[J]. Journal of Computer Applications, 2017, 37 (11): 3053- 3056. | |
18 | ZHOU Chunting, SUN Chonglin, LIU Zhiyuan, et al. A C-LSTM neural network for text classification[J]. Computer Science, 2015. https://arxiv.org/pdf/1704.05973.pdf?tdsourcetag=s_pcqq_aiomsg. |
19 | CHO K, MERRIENBOER B V, BAHDANAU D, et al. On the properties of neural machine translation: Encoder-decoder approaches[C]//Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation. Doha, Qatar: ACL, 2014, 103-111. |
20 | KINGMA D, BA J. ADAM: A Method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representation. San Diego, USA: ICLR, 2015 |
21 | YANG Fan, YU Xiaohui, LIU Yang, et al. Automatic detection of rumor on Sina Weibo[C]//Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics. Beijing, China: ACM, 2012. |
[1] | 周晓昕,廖祝华,刘毅志,赵肄江,方艺洁. 融合历史与当前交通流量的信号控制方法[J]. 山东大学学报 (工学版), 2023, 53(4): 48-55. |
[2] | 于畅,伍星,邓秋菊. 基于深度学习的多视角螺钉缺失智能检测算法[J]. 山东大学学报 (工学版), 2023, 53(4): 104-112. |
[3] | 宋佳芮,陈艳平,王凯,黄瑞章,秦永彬. 基于Affix-Attention的命名实体识别语义补充方法[J]. 山东大学学报 (工学版), 2023, 53(2): 70-76. |
[4] | 袁钺,王艳丽,刘勘. 基于空洞卷积块架构的命名实体识别模型[J]. 山东大学学报 (工学版), 2022, 52(6): 105-114. |
[5] | 李旭涛,杨寒玉,卢业飞,张玮. 基于深度学习的遥感图像道路分割[J]. 山东大学学报 (工学版), 2022, 52(6): 139-145. |
[6] | 孟令灿,聂秀山,张雪. 基于遮挡目标去除的公交车拥挤度分类算法[J]. 山东大学学报 (工学版), 2022, 52(4): 83-88. |
[7] | 杨霄,袭肖明,李维翠,杨璐. 基于层次化双重注意力网络的乳腺多模态图像分类[J]. 山东大学学报 (工学版), 2022, 52(3): 34-41. |
[8] | 王心哲,邓棋文,王际潮,范剑超. 深度语义分割MRF模型的海洋筏式养殖信息提取[J]. 山东大学学报 (工学版), 2022, 52(2): 89-98. |
[9] | 蒋桐雨, 陈帆, 和红杰. 基于非对称U型金字塔重建的轻量级人脸超分辨率网络[J]. 山东大学学报 (工学版), 2022, 52(1): 1-8. |
[10] | 吴建清,宋修广. 同步定位与建图技术发展综述[J]. 山东大学学报 (工学版), 2021, 51(5): 16-31. |
[11] | 杨修远,彭韬,杨亮,林鸿飞. 基于知识蒸馏的自适应多领域情感分析[J]. 山东大学学报 (工学版), 2021, 51(3): 15-21. |
[12] | 柴庆发,孙守晶,邱吉福,陈明,魏振,丛伟. 气象灾害条件下电网应急物资预测方法[J]. 山东大学学报 (工学版), 2021, 51(3): 76-83. |
[13] | 廖锦萍,莫毓昌,YAN Ke. 基于C-LSTM的短期用电预测模型和应用[J]. 山东大学学报 (工学版), 2021, 51(2): 90-97. |
[14] | 刘帅,王磊,丁旭涛. 基于Bi-LSTM的脑电情绪识别[J]. 山东大学学报 (工学版), 2020, 50(4): 35-39. |
[15] | 蔡国永,贺歆灏,储阳阳. 基于空间注意力和卷积神经网络的视觉情感分析[J]. 山东大学学报 (工学版), 2020, 50(4): 8-13. |
|