山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (1): 41-46.doi: 10.6040/j.issn.1672-3961.0.2018.341
摘要:
以微博数据为研究对象,对反语识别特征进行研究。针对微博特点和反语识别特性,构建包括情感短语、表情符号等在内的多种特征。试验表明,在不平衡数据集上反语特征的识别准确率、召回率和F值等评价标准分别比现有反语特征分别提高了0.34%、0.74%和0.18%,而在平衡数据集上反语特征的识别准确率、召回率和F值则分别提高了0.44%、2.54%和0.14%。
中图分类号:
1 | WANG M, CAO D, LI L, et al. Microblog sentiment analysis based on cross-media bag-of-words model[C]//International Conference on Internet Multimedia Computing and Service. Xiamen: ACM, 2014: 76. |
2 | JIANG F, LIU Y, LUAN H, et al. Microblog sentiment analysis with emoticon space model[C]//Chinese National Conference on Social Media Processing. Berlin, Germany: Springer, 2014: 76-87. |
3 | OUG, CHEN W, LI B, et al. Clusm: an unsupervised model for microblog sentiment analysis incorporating link information[C]// International Conference on Database Systems for Advanced Applications. Bali, Indonesia: Springer, 2014: 481-494. |
4 | KAROUI J, FARAH B, MORICEAU V, et al. Towards a contextual pragmatic model to detect irony in tweets[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Beijing: ACL, 2018: 644-650. |
5 |
BRUNTSCH R , RUCH W . Studying irony detection beyond ironic criticism: let′s include ironic praise[J]. Frontiers in Psychology, 2017, 8, 606.
doi: 10.3389/fpsyg.2017.00606 |
6 | TASLIOGLU H, KARAGOZ P. Irony detection on microposts with limited set of features[C]//Proceedings of the Symposium on Applied Computing. Marrakech, Morocco: ACM, 2017: 1076-1081. |
7 | SAVOV P, NIELEK R. Ridiculously expensive watches and surprisingly many reviewers: a study of irony[C]//International Conference on Web Intelligence. Omaha, USA: IEEE, 2017: 725-729. |
8 |
刘正光. 反语理论综述[J]. 解放军外国语学院学报, 2002, 22 (4): 16- 18.
doi: 10.3969/j.issn.1002-722X.2002.04.004 |
LIU Zhengguang . A critique of irony theories[J]. Journal of PLA University of Foreign Language, 2002, 22 (4): 16- 18.
doi: 10.3969/j.issn.1002-722X.2002.04.004 |
|
9 | TANG Y J, CHEN H. Chinese irony corpus construction and ironic structure analysis[C]//Proceedings of the 25th International Conference on Computational Lingustics. Dublin, Ireland: ACL, 2014: 1269-1278. |
10 |
邓钊, 贾修一, 陈家骏. 面向微博的中文反语识别研究[J]. 计算机工程与科学, 2015, 37 (12): 2312- 2317.
doi: 10.3969/j.issn.1007-130X.2015.12.018 |
DENG Zhao , JIA Xiuyi , CHEN Jiajun . A survey on chinese ironic detection in microblog[J]. Computer Engineering and Science, 2015, 37 (12): 2312- 2317.
doi: 10.3969/j.issn.1007-130X.2015.12.018 |
|
11 | WU C H, WU F Z, WU S X, et al. THU NGN at semeval-2018 task 3: tweet irony detection with densely connected lstm and multi-task learning[C]//Proceedings of the 12th International Workshop on Semantic Evaluation. New Orleans, USA: ACL, 2018: 51-56. |
12 | 邢竹天, 徐扬. 面向网络文本的汉语反讽修辞识别方法研究[J]. 山西大学学报(自然科学版), 2015, 38 (3): 385- 391. |
XIN Zhutian , XU Yang . A study of chinese sarcasm detection methods on internet texts[J]. Journal of Shanxi University(Natural Science Edition), 2015, 38 (3): 385- 391. | |
13 | CHARALAMPAKIS B, SPATHIS D, KOUSLIS E, et al. Detecting irony ongreek political tweets: a text mining approach[C]// In Proceedings of the 16th International Conference on Engineering Applications of Neural Networks. New York, USA: ACM, 2015, 17: 1-5. |
14 | REYESA, ROSSO P. Mining subjective knowledge from customer reviews: a specific case of irony detection[C]// Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis. Portland, USA: ACL, 2011: 118-124. |
15 | BOUAZIZIM, OHTSUKI T. Sarcasm detection in twitter[C]// Global Communications Conference. San Diego, USA: IEEE, 2016: 1-6. |
16 | RAVIK , RAVI V . A novel automatic satire and irony detection using ensembled feature selection and data mining[J]. Knowledge-Based Systems, 2016, 120, 15- 33. |
17 | CARVALHOP. Clues for detecting irony in user-generated contents: oh…!! it′s "so easy"; -[C]// International CIKM Workshop on Topic-Sentiment Analysis for MASS Opinion. New York, USA: ACM, 2009: 53-56. |
18 | 吕叔湘. 中国文法要略[M]. 北京: 商务印书馆, 1982. |
[1] | 钱春琳,张兴芳,孙丽华. 基于在线评论情感分析的改进协同过滤推荐模型[J]. 山东大学学报 (工学版), 2019, 49(1): 47-54. |
[2] | 沈冀,马志强,李图雅,张力. 面向短文本情感分析的词扩充LDA模型[J]. 山东大学学报(工学版), 2018, 48(3): 120-126. |
[3] | 周哲, 商琳. 一种基于动态词典和三支决策的情感分析方法[J]. 山东大学学报(工学版), 2015, 45(1): 19-23. |
[4] | 周咏梅1,阳爱民1,林江豪2. 中文微博情感词典构建方法[J]. 山东大学学报(工学版), 2014, 44(3): 36-40. |
[5] | 周咏梅1,杨佳能2,阳爱民2. 面向文本情感分析的中文情感词典构建方法[J]. 山东大学学报(工学版), 2013, 43(6): 27-33. |
[6] | 孙晓燕1,2,张化祥1,2*,计华1,2. 基于AdaBoost的欠抽样集成学习算法[J]. 山东大学学报(工学版), 2011, 41(4): 91-94. |
[7] | 李霞1,王连喜2,蒋盛益1. 面向不平衡问题的集成特征选择[J]. 山东大学学报(工学版), 2011, 41(3): 7-11. |
|