您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (1): 107-113.doi: 10.6040/j.issn.1672-3961.0.2017.385

• 机械工程 • 上一篇    下一篇

CNN特征与BOF相融合的水下目标识别算法

权稳稳(),林明星*()   

  1. 山东大学机械工程学院, 山东 济南 250061
  • 收稿日期:2017-08-03 出版日期:2019-02-01 发布日期:2019-03-01
  • 通讯作者: 林明星 E-mail:qw13541179302@126.com;mxlin2000@163.com
  • 作者简介:权稳稳(1992—),女,河南洛阳人,硕士研究生,主要研究方向为机器视觉与图像处理. E-mail:qw13541179302@126.com

Algorithm of underwater target recognition based on CNN features with BOF

Wenwen QUAN(),Mingxing LIN*()   

  1. School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2017-08-03 Online:2019-02-01 Published:2019-03-01
  • Contact: Mingxing LIN E-mail:qw13541179302@126.com;mxlin2000@163.com

摘要:

为了改善作为低级表示的尺度不变特征变换(scale invariant feature transform, SIFT)匹配常出现的没有足够特征来防止假匹配的问题,提出在传统方法“词袋”(bag of features, BOF)算法中融合具有较好语义分割能力的卷积神经网络(convolution neural network, CNN)特征来提高识别率的方法。利用ImageCLEF网站的LifeCLEF鱼类视频,制作目标图像数据库。在caffe平台的Alexnet模型进行卷积神经网络的训练,提取图像库和查询图像的特征。利用训练好的CNN特征在Matlab软件进行识别试验验证,计算汉明距离来验证匹配效果。改变参数值来观察不同汉明距离阈值对水下目标识别结果的影响。自制图像库的试验表明,融合深度学习的特征可以有效提高BOF算法的水下目标识别率,对汉明距离阈值的选择需要根据实际情况选择合适的参数。

关键词: 水下目标识别, BOF, SIFT匹配, 卷积神经网络, 汉明距离

Abstract:

In order to prevent false matching problems of scale invariant feature transform (SIFT) matching as a low-level representation for lack of sufficient features, an improved bag of features (BOF) algorithm method combined with the convolution neural network (CNN) features was proposed, which had better semantic segmentation ability to enhance the recognition rates. The LifeCLEF fish video on ImageCLEF website was used to create our own target image databases. Convolution neural network was trained in the Alexnet architecture of caffe, and the features of image databases and query images were extracted. The trained CNN features were simulated in Matlab, and the hamming distance was calculated to verify the matching effect. In addition, the parameter values were changed to test the effect of different Hamming distance thresholds on target recognition results. The experiment of self-made image databases showed that the fusion of depth learning features could effectively improve the underwater target recognition rates of BOF algorithm, and the selection of Hamming distance thresholds required selecting the appropriate parameters according to the actual situation.

Key words: underwater target recognition, bag of features, scale invariant feature transform matching, convolution neural networks, Hamming distance

中图分类号: 

  • TP391

图1

融合CNN特征的水下目标识别方法框图"

图2

新图像库的鱼种类"

表1

训练、验证、测试图像数量"

类别 训练 验证 测试 训练验证总计
短身光鳃雀鲷
弓月蝴蝶鱼
黑带椒雀鲷
三带圆雀鲷
网纹圆雀鲷
小高鳍刺尾鱼
2 310
926
2 300
1 516
2 303
650
289
116
288
190
288
82
288
116
288
189
288
82
2 599
1 042
2 588
1 706
2 591
732
总计 10 005 1 253 1 251 11 258

表2

六种鱼类识别率(T=0.600)"

%
方法 BOF CNN BOF+Conv5 BOF+Fc6 BOF+Fc7
短身光鳃雀鲷
弓月蝴蝶鱼
黑带椒雀鲷
三带圆雀鲷
网纹圆雀鲷
小高鳍刺尾鱼
74.0
70.7
71.6
76.5
69.7
69.5
74.3
73.8
72.6
75.8
74.2
72.4
86.8
85.5
83.1
87.3
82.8
82.1
86.7
85.3
86.2
87.0
84.5
84.8
76.0
72.8
74.6
76.8
71.3
74.2
平均识别率 72.2 73.9 84.7 85.9 74.3

图3

汉明距离的分布"

图4

参数T对识别率的影响"

1 JAFFE J S , MOORE K D , MCLEAN J , et al. Underwater optical imaging: status and prospects[J]. Oceanography, 2001, 14 (3): 66- 76.
2 王士龙, 徐玉如, 万磊, 等. 基于边界矩和改进FCM聚类的水下目标识别[J]. 系统工程理论与实践, 2012, 32 (12): 2809- 2815.
WANG Shilong , XU Yuru , WANG Lei , et al. Underwater targets recognition based on contour moment and modified FCM algorithm[J]. System Engineering Theory and Practice, 2012, 32 (12): 2809- 2815.
3 FATAN M , DALIRI M R , MOHAMMAD S A , et al. Underwater cable detection in the images using edge classification based on texture information[J]. Measurement, 2016, 91, 309- 317.
doi: 10.1016/j.measurement.2016.05.030
4 乔曦.基于水下机器视觉的海参实时识别研究[D].北京:中国农业大学, 2017.
QIAO Xi. Sea cucumber identification in real-time based on underwater machine vision technique[D]. Beijing: China Agricultural University, 2017.
5 LOWE D G . Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60 (2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94
6 BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features[C]//Computer Vision-ECCV 2006. Graz, Austria: Springer Berlin Heidelberg, 2006: 404-417.
7 ZHENG Z Z , YUN Z , YAN L X . Global and local exploitation for saliency using bag-of-words[J]. IET Computer Vision, 2014, 8 (4): 299- 304.
doi: 10.1049/iet-cvi.2013.0132
8 KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Proceedings of the Conference on Neural Information Processing Systems. Lake Tahoe, Spain: IEEE, 2012: 1097-1105.
9 REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
10 LECUN Y , BOTTOU L , BENGIO Y , et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86 (11): 2278- 2324.
doi: 10.1109/5.726791
11 SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 1-9.
12 HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//CVPR 16: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Los Vegas, USA: IEEE, 2016: 770-778.
13 LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 1337-1342.
14 EKANAYAKE J, PALLICKARE S. Map reduce for data intensive scientific analysis[C]//IEEE Science. Piscatway, USA: IEEE, 2008: 277-284.
15 LAZEBNIK S, SCHMID C, PONCE J. Video google: a text retrieval approach to object matching in videos[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006: 2169-2178.
16 SIVIC J, ZISSERMAN A. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories[C]//Proceedings of Ninth IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003: 1470-1477.
17 JEGOU H , DOYZE M , SCHMID C . Improving bag of features for large scale image search[J]. International Journal of Computer Vision, 2010, 87 (3): 316- 336.
doi: 10.1007/s11263-009-0285-2
18 ZHANG G X , ZENG Z , ZHANG S W , et al. SIFT matching with CNN evidences for particular object retrieval[J]. Neurocomputing, 2017, 238, 399- 409.
doi: 10.1016/j.neucom.2017.01.081
19 RUSSAKOVSKY O , DENG J , SU H , et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2014, 115 (3): 211- 252.
20 CAMPBELL A T , MEER H G D , KOUNAVIS M E , et al. A survey of programmable networks[J]. ACM Computer Communications Review, 1999, 29 (2): 7- 23.
doi: 10.1145/505733
21 LI X, SHANG M, QIN H W, et al. Fast Accurate Fish detection and recognition of Underwater Images with Fast R-CNN[C]//Oceans. Washington, USA: IEEE, 2015: 1-5.
22 JIA Y, SHELHAMER E, DONAHUE J, et al. Caffe: convolutional architecture for fast feature embedding[C]//Proceedings of the 22nd ACM international conference on Multimedia. Orlando, USA: arXiv, 2014: 675-678.
[1] 梁蒙蒙,周涛,夏勇,张飞飞,杨健. 基于PSO-ConvK卷积神经网络的肺部肿瘤图像识别[J]. 山东大学学报 (工学版), 2018, 48(5): 77-84.
[2] 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报 (工学版), 2018, 48(5): 47-54.
[3] 何正义,曾宪华,郭姜. 一种集成卷积神经网络和深信网的步态识别与模拟方法[J]. 山东大学学报(工学版), 2018, 48(3): 88-95.
[4] 谢志峰,吴佳萍,马利庄. 基于卷积神经网络的中文财经新闻分类方法[J]. 山东大学学报(工学版), 2018, 48(3): 34-39.
[5] 赵彦霞, 王熙照. 基于SVD和DCNN的彩色图像多功能零水印算法[J]. 山东大学学报(工学版), 2018, 48(3): 25-33.
[6] 徐姗姗,刘应安*,徐昇. 基于卷积神经网络的木材缺陷识别[J]. 山东大学学报(工学版), 2013, 43(2): 23-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 夏 斌,张连俊 . DS-CDMA UWB系统中基于能量比较的TOA估计算法[J]. 山东大学学报(工学版), 2007, 37(1): 70 -73 .
[2] 卜德云 张道强. 自适应谱聚类算法研究[J]. 山东大学学报(工学版), 2009, 39(5): 22 -26 .
[3] 赵科军 王新军 刘洋 仇一泓. 基于结构化覆盖网的连续 top-k 联接查询算法[J]. 山东大学学报(工学版), 2009, 39(5): 32 -37 .
[4] 丁万涛 李术才 张庆松. TSP预报倾斜岩层分界面误差规律性探讨[J]. 山东大学学报(工学版), 2009, 39(4): 57 -60 .
[5] 王佰伟,曹升乐 . 工业废水治理效果多目标评价方法研究[J]. 山东大学学报(工学版), 2007, 37(3): 89 -92 .
[6] 丑武胜 王朔. 大刚度环境下力反馈主手自适应算法研究[J]. 山东大学学报(工学版), 2010, 40(1): 1 -5 .
[7] 张辉 王孟夏 韩学山. 电力系统的超前热定值及其应用探讨[J]. 山东大学学报(工学版), 2008, 38(6): 25 -29 .
[8] 闫崇京 廖文和 郭宇 程筱胜. 基于多色图的BOM建模[J]. 山东大学学报(工学版), 2008, 38(6): 70 -75 .
[9] 王建平,王淑华,耿贵立 . InN半导体纳米晶相变活化能的研究[J]. 山东大学学报(工学版), 2008, 38(2): 42 -44 .
[10] 陈斌 陈松灿 潘志松 李斌. 异常检测综述[J]. 山东大学学报(工学版), 2009, 39(6): 13 -23 .