山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (1): 101-106.doi: 10.6040/j.issn.1672-3961.0.2018.417
Yulei ZHANG(),Yong WANG*(),Yudong XIE,Guang SUN,Yanyun WANG,Jiazhen HAN
摘要:
为获得新型液态金属磁流体发电机的流动规律,对空载发电通道动力学特性进行三维数值模拟研究。采用基于Fluent软件的感应磁场法和修正的K-ε湍流模型保证计算精度;对比分析近壁面和中心层的速度及电磁力分布;定义速度波动程度,选取不同物理参数,对发电有效段下游的速度剖面及其波动程度量化分析。结果表明,发电有效段下游速度波动程度最大,速度剖面及其波动程度受发电通道参数的影响明显。当通道宽度相同时,相互作用参数决定速度剖面波动程度,相互作用参数与速度波动程度成正比;随着宽度增大,相互作用参数对速度波动程度影响下降。
中图分类号:
1 |
赵凌志, 彭燕, 沙次文, 等. 新型液态金属磁流体发电机的等效电路模型[J]. 电力自动化设备, 2011, 31 (12): 21- 31.
doi: 10.3969/j.issn.1006-6047.2011.12.004 |
ZHAO Lingzhi , PENG Yan , SHA Ciwen , et al. Equivalent circuit model of liquid metal magnetohydrodynamic generator[J]. Electric Power Automation Equipment, 2011, 31 (12): 21- 31.
doi: 10.3969/j.issn.1006-6047.2011.12.004 |
|
2 | TIMOTHY M, RYNNE. Ocean wave energy conversion system: 5136173[P]. 1992-08-04. |
3 | YAMADA K , MAEDA T , HASEGAWA Y , et al. Two-dimensional numerical simulation on performance of liquid metal MHD generator[J]. Electrical Engineering in Japan, 2006, 156 (1): 25- 32. |
4 | YAMADA K , MAEDA T , HASEGAWA Y , et al. Three-dimensional numerical analysis of a liquid metal MHD generator[J]. Electrical Engineering in Japan, 2007, 160 (3): 141- 146. |
5 |
HU L C , KOBAYASHI H , OKUNO Y . Analyses on response of a liquid metal MHD power generation system to various external inputs[J]. IEEE Transactions on Electrical and Electronic Engineering, 2015, 10, 268- 273.
doi: 10.1002/tee.2015.10.issue-3 |
6 | ZHAO L Z, PENG Y, SHA C W, et al. Effect of liquid metal characteristics on performance of LMMHD wave energy conversion system[C]//Proceedings of the 19th International Offshore and Polar Engineering Conference. Osaka, Japan: ISOPE, 2009: 308-311. |
7 | LIU B L, PENG Y, ZHAO L Z, et al. Hydrodynamic modelling of heaving buoy wave energy conversion system with liquid metal magnetohydrodynamic generator[C]//Proceedings of the 21st International Offshore and Polar Engineering Conference. Hawaii, USA: ISOPE, 2011: 695-700. |
8 | LIU B L , LI J , PENG Y , et al. Experimental and numerical investigation of magnetohydrodynamic generator for wave energy[J]. Journal of Ocean and Wind Energy, 2015, 1 (2): 21- 27. |
9 | 王勇,孙光,崔艳,等.鳐鱼式液态金属磁流体发电装置及发电方法: 201610191945.5[P]. 2016-03-30. |
10 | HARTMANN J . Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field[J]. Math.-fys. Medd, 1937, 15 (6): 1- 28. |
11 |
SHERCLIFF J A . Steady motion of conducting fluids in pipes under transverse magnetic fields[J]. Proceedings of the Cambridge Philosophical Society, 1953, 49, 136- 144.
doi: 10.1017/S0305004100028139 |
12 |
HUNT J C R . Magnetohydrodynamic flow in rectangular ducts[J]. Journal of Fluid Mechanics, 1965, 21 (4): 577- 590.
doi: 10.1017/S0022112065000344 |
13 | STERL A . Numerical simulation of liquid-metal MHD flows in rectangular ducts[J]. Journal of Fluid Mechanics, 1990, 216 (1): 161- 191. |
14 |
KOBAYASHI H , SHIONOYA H , OKUNO Y . Turbulent duct flows in a liquid metal magnetohydrodynamic power generator[J]. Journal of Fluid Mechanics, 2012, 713, 243- 270.
doi: 10.1017/jfm.2012.456 |
15 |
HUANG Z Y , LIU Y J , WANG Z Y , et al. Three-dimensional simulations of MHD generator coupling with outer resistance circuit[J]. Simulation Modelling Practice and Theory, 2015, 54, 1- 18.
doi: 10.1016/j.simpat.2015.02.006 |
16 | HU L C. Numerical study of performance and turbulent flows in a liquid metal MHD generator[D]. Tokyo: Department of Energy Sciences, Tokyo Institute of Technology, 2015. |
17 | ZHAO L Z, PENG Y, SHA C W, et al. End effect of liquid metal magnetohydrodynamic generator in wave energy direct conversion system[C]//International Conference on Sustainable Power Generation and Supply, 2009. Supergen. Nanjing, China: IEEE, 2009: 1-6. |
18 |
SMOLENTSV S , ABDOU M , MORLEY N , et al. Application of the "K-ε" model to open channel flows in a magnetic field[J]. International Journal of Engineering Science, 2002, 40, 693- 711.
doi: 10.1016/S0020-7225(01)00088-X |
19 | 吴其芬, 李桦. 磁流体力学[M]. 长沙: 国防科技大学出版社, 2007: 49- 52. |
20 | SUBRAMANIAN S , SWAIN P K , DESHPANDE A V , et al. Effect of Hartmann layer resolution for MHD flow in a straight, conducting duct at high Hartmann numbers[J]. Indian Academy of Sciences, 2015, 40 (3): 851- 861. |
[1] | 王忠啸,崔新壮,崔社强,张磊,车华桥,苏俊伟. 咸水区水泥土桩劣化及改性对道路复合地基的影响[J]. 山东大学学报(工学版), 2018, 48(4): 69-77. |
[2] | 宋贵杰. 浅埋软岩段隧道进洞施工变形特征与失稳分析[J]. 山东大学学报(工学版), 2018, 48(2): 53-60. |
[3] | 王丹华,张冠敏,冷学礼,徐梦娜,韩圆圆. T型管内两相流分配特性数值模拟[J]. 山东大学学报(工学版), 2018, 48(1): 89-95. |
[4] | 夏梦然,李卫,冯啸,朱光轩,李夏. 极浅埋富水砂层地铁横通道注浆加固与开挖稳定性[J]. 山东大学学报(工学版), 2017, 47(2): 47-54. |
[5] | 郑林彬,王建明,何讯超. 2024铝合金喷丸粗糙度试验与数值模拟[J]. 山东大学学报(工学版), 2017, 47(1): 84-89. |
[6] | 吕国仁,张群,牛奔,高全亭,武照收. 高层建筑桩基施工对邻近建筑物的影响[J]. 山东大学学报(工学版), 2017, 47(1): 48-58. |
[7] | 彭元诚,董旭,梁娜,邓振全. 北盘江新型空腹式连续刚构桥角隅节点模型试验研究[J]. 山东大学学报(工学版), 2016, 46(6): 113-119. |
[8] | 米春荣,李建明. 预应力混凝土管桩后注浆器的研制与应用[J]. 山东大学学报(工学版), 2016, 46(4): 89-95. |
[9] | 周乾,闫维明,纪金豹. 故宫灵沼轩钢结构动力特性与地震响应[J]. 山东大学学报(工学版), 2016, 46(1): 70-79. |
[10] | 汤潍泽, 欧金秋, 崔新壮, 楼俊杰, 肖溟, 张炯, 黄丹, 侯飞. 车载引起的沥青路面内动水压力现场试验研究[J]. 山东大学学报(工学版), 2015, 45(6): 84-90. |
[11] | 曹伟东, 戴涛, 于金彪, 席开华, 鲁统超, 程爱杰. 化学驱数值模拟的IMPIMC方法[J]. 山东大学学报(工学版), 2015, 45(1): 88-94. |
[12] | 高智珺, 崔新壮, 隋伟, 郭洪, 刘航, 李长义, 冯洪波. 大型失控车辆与隧道衬砌的动态相互作用与损伤分析[J]. 山东大学学报(工学版), 2014, 44(5): 49-57. |
[13] | 张涛, 韩吉田, 闫素英, 于泽庭, 周然. 太阳能真空管的热性能分析与测试[J]. 山东大学学报(工学版), 2014, 44(4): 76-83. |
[14] | 周前, 赵德刚. 水平旋喷桩在富水砂层浅埋暗挖隧道中的应用[J]. 山东大学学报(工学版), 2014, 44(4): 52-57. |
[15] | 张文俊,李术才,苏茂鑫*,薛翊国,邱道宏. 基于井间电阻率成像的城市地铁溶洞探测方法[J]. 山东大学学报(工学版), 2014, 44(3): 75-82. |
|