山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (3): 127-133.doi: 10.6040/j.issn.1672-3961.0.2017.423
曹雅,邓赵红*,王士同
CAO Ya, DENG Zhaohong*, WANG Shitong
摘要: 径向基函数(radial basis function, RBF)神经网络是一种高效的前馈式神经网络。它结构简单,具有良好的泛化能力,已经被广泛的应用于数据分类中。但是对于一些特殊的分类场景,如单调数据场景,神经网络还未充分发挥其潜能。针对此,提出单调径向基函数神经网络(monotonic radial basis function neural network, MC-RBF)。MC-RBF引入Tikhonov 正则化方法确保优化问题解的唯一性与有界性。试验结果表明,在处理具有单调性的数据集时,MC-RBF比原始的RBF神经网络具有更好的分类性能。
中图分类号:
[1] 罗小波,王云安,肖春宝,等. RBF神经网络在遥感影像分类中的应用研究[J]. 遥感技术与应用, 2004, 16(2): 119-123. LUO Xiaobo, WANG Yunan, XIAO Chunbao, et al. The application of RBF neural network in remote sensing image classification[J]. Remote Sensing Technology and Application, 2004, 16(2): 119-123. [2] 那文波,何宁,刘巍,等. 基于遗传算法优化的RBF神经网络的压力传感器故障诊断[J]. 煤矿机械, 2016(7): 180-183. NA Wenbo, HE Ning, LIU Wei, et al. Fault diagnosis of pressure sensor based on RBF neural network optimized by genetic algorithm[J]. Coal Mine Machinery, 2016(7):180-183. [3] BEN-David A, STERLING L, PAO Y H. Learning and classification of monotonic ordinal concepts[J]. Computational Intelligence, 1989, 5(1): 45-49. [4] BEN-DAVID A. Monotonicity maintenance in information-theoretic machine learning algorithms[J]. Machine Learning, 1995, 19(1): 29-43. [5] LI S T, CHEN C C. A regularized monotonic fuzzy support vector machine model for data mining with prior knowledge[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(5):1713-1727. [6] MAES C M. A regularized active-set method for sparse convex quadratic programming[D]. Palo Alto, USA: Stanford University, 2010. [7] VAUHKONEN M, VADASZ D, KARJALAINEN P A, et al. Tikhonov regularization and prior information in electrical impedance tomography[J]. IEEE Transactions on Medical Imaging, 1998, 17(2):285-293. [8] TIKHONOV A N, ARSENIN V Y. Solutions of Ill-posed problems[J]. Mathematics of Computation, 1977, 32(144):491-491. [9] ABU-MOSTAFA Y S. Hints[J]. Neural Computation, 1995, 7(4):639-671. [10] ABU-MOSTAFA Y S. Learning from hints[J]. Complexity, 1994, 10: 165-178. [11] WISMER D, CHATTERGY R. Introduction to nonlinear optimization[M]. Amsterdam, Netherland: North Holland, 1978:227-313. [12] WANG J J, ZHANG C F, JING Y Y. Self-adaptive RBF neural network PID control in exhaust temperature of micro gas turbine[C] //International Conference on Machine Learning and Cybernetics. Kunming: IEEE, 2008:2131-2136. [13] 黄涛. 基于RBF神经网络的非线性回归模型[EB/OL].(2011-3-29)[2017-3-18]. http://www.paper.edu.cn. HUANG Tao. An nonlinear regression model based on RBF neural network [EB/OL].(2011-3-29)[2017-3-18]. http://www.paper.edu.cn. [14] 田俊峰, 张晶, 毕志明. 基于改进的 RBF神经网络的入侵检测研究[J]. 计算机工程与应用, 2008, 44(31): 135-138. TIAN Junfeng, ZHANG Jing, BI Zhiming. Research of intrusion detection based on improved RBF neural network[J]. Computer Engineering and Applications, 2008, 44(31): 135-138. [15] NIROS A D, TSEKOURAS G E, TSOLAKIS D, et al. Hierarchical fuzzy clustering in conjunction with particle swarm optimization to efficiently design RBF neural networks[J]. Journal of Intelligent & Robotic Systems, 2015, 78(1): 105-125. [16] NIROS A D, TSEKOURAS G E. A novel training algorithm for RBF neural network using a hybrid fuzzy clustering approach[J]. Fuzzy Sets and Systems, 2012, 193: 62-84. [17] YUN Z, QUAN Z, CAIXIN S, et al. RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment[J]. IEEE Transactions on Power Systems, 2008, 23(3): 853-858. [18] 唐启义, 冯明光. DPS数据处理系统: 实验设计、统计分析及模型优化[M]. 北京: 科学出版社, 2006. TANG Qiyi, FENG Mingguang. DPS data processing system: experimental design: Statistical Analysis and Modeling[M]. Beijing: Science Press, 2006. [19] LI Y, QIANG S, ZHUANG X, et al. Robust and adaptive backstepping control for nonlinear systems using RBF neural networks[J]. IEEE Transactions on Neural Networks, 2004, 15(3): 693-701. [20] LIN C L, WANG J F, CHEN C Y, et al. Improving the generalization performance of RBF neural networks using a linear regression technique[J]. Expert Systems with Applications, 2009, 36(10): 12049-12053. [21] BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining & Knowledge Discovery, 1998, 2(2):121-167. |
[1] | 熊冰妍, 王国胤, 邓维斌. 分级式代价敏感决策树及其在手机换机预测中的应用[J]. 山东大学学报(工学版), 2015, 45(5): 36-42. |
[2] | 王晓初, 王士同, 包芳. 基于概率密度分布一致约束的最小最大概率机图像分类算法[J]. 山东大学学报(工学版), 2015, 45(5): 13-21. |
[3] | 张东波,寇涛,许海霞. 基于LDB描述子和局部空间结构匹配的快速场景辨识[J]. 山东大学学报(工学版), 2018, 48(5): 16-23. |
[4] | 陈海永,余力,刘辉,杨佳博,胡启迪. 基于经验小波的太阳能电池缺陷图像融合[J]. 山东大学学报(工学版), 2018, 48(5): 24-31. |
[5] | 牟廉明. 自适应特征选择加权k子凸包分类[J]. 山东大学学报(工学版), 2018, 48(5): 32-37. |
[6] | 沈冬冬,周风余,栗梦媛,王淑倩,郭仁和. 基于集成深度神经网络的室内无线定位[J]. 山东大学学报(工学版), 2018, 48(5): 95-102. |
[7] | 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报(工学版), 2018, 48(5): 47-54. |
[8] | 王国新,陈凤东,刘国栋. 基于彩色伪随机编码结构光特征提取方法[J]. 山东大学学报(工学版), 2018, 48(5): 55-60. |
[9] | 胡建平,李鑫,谢琪,李玲,张道畅. 基于Delaunay三角化的二维无约束优化EMD方法[J]. 山东大学学报(工学版), 2018, 48(5): 9-15. |
[10] | 李广丽,刘斌,朱涛,殷依,张红斌. 基于优选典型相关分量的跨媒体检索模型[J]. 山东大学学报(工学版), 2018, 48(5): 38-46. |
[11] | 吴晨谋,方志军,黄正能. 基于单目摄像头的主动式驾驶行为分析算法[J]. 山东大学学报(工学版), 2018, 48(5): 69-76. |
[12] | 张宪红,张春蕊. 基于六维前馈神经网络模型的图像增强算法[J]. 山东大学学报(工学版), 2018, 48(4): 10-19. |
[13] | 江珊珊,杨静,范丽亚. 基于PDEs的图像特征提取方法[J]. 山东大学学报(工学版), 2018, 48(4): 27-36. |
[14] | 窦婷婷,姚元玺,陈鹏,芦灯. 基于ATP-EMTP的电弧建模及工程仿真[J]. 山东大学学报(工学版), 2018, 48(4): 102-108. |
[15] | 黄劲潮. 基于快速区域建议网络的图像多目标分割算法[J]. 山东大学学报(工学版), 2018, 48(4): 20-26. |
|