您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 86-93.doi: 10.6040/j.issn.1672-3961.0.2017.591

• • 上一篇    下一篇

V-Gap度量磁悬浮推力轴承系统H控制器设计

崔恒斌1,周瑾1*,董继勇2,金超武1   

  1. 1. 南京航空航天大学机电学院, 江苏 南京 210016;2. 南京磁谷科技有限公司, 江苏 南京 211102
  • 收稿日期:2017-09-14 出版日期:2018-04-20 发布日期:2017-09-14
  • 通讯作者: 周瑾(1972— ),女,江苏南京人,教授,博导,主要研究方向为磁悬浮技术,机电一体化. E-mail: zhj@nuaa.edu.cn E-mail:cuihengbin1993@foxmail.com
  • 作者简介:崔恒斌(1993— ),男,江苏南通人,硕士研究生,主要研究方向为磁悬浮技术. E-mail: cuihengbin1993@foxmail.com
  • 基金资助:
    国家自然科学基金资助项目(51675261);南京航空航天大学研究生创新基地开放基金项目资助(kfjj20160509)(中央高校基本科研业务费专项资金)

Design of H controller for magnetic thrust bearing system based on V-Gap metric

CUI Hengbin1, ZHOU Jin1*, DONG Jiyong2, JIN Chaowu1   

  1. 1. Mechanical and electrical College, Nanjing University of Aeronautics &
    Astronautics, Nanjing 210016, Jiangsu, China;
    2. Nanjing CIGU Co., Ltd, Nanjing 211102, Jiangsu, China
  • Received:2017-09-14 Online:2018-04-20 Published:2017-09-14

摘要: 磁悬浮压缩机变叶尖间隙喘振控制策略的实现,需要推力轴承系统控制转子精确跟踪轴向位置以及应对轴向载荷多变的问题。为保证磁悬浮推力轴承系统鲁棒控制器能够满足一定的位置跟踪和抗干扰性能,对磁悬浮推力轴承系统建模,将V-Gap度量与广义稳定裕度评价结合设计H控制器。介绍了V-Gap度量和广义稳定裕度,对推力轴承系统建模利用V-Gap度量定量分析系统参数不确定性对被控对象的影响程度;在混合灵敏度H控制基础上,提出以广义稳定裕度为稳定性要求的控制器设计方法,并试验验证该方法合理性。研究结果表明:设计后控制器具有更好的鲁棒性及位置跟踪性能。

关键词: V-Gap度量, 参数不确定性, 广义稳定裕度, 磁悬浮推力轴承系统, 控制器设计, 位置跟踪

Abstract: The realization of surge control strategy for active magnetic bearing suspended centrifugal compressor with changing tip clearance requires that magnetic thrust bearing system could control the rotor accurately tracking the axial position and deal with the problem of variable axial load. Therefore, to ensure that magnetic thrust bearing system controller satisfy certain position tracking and anti-jamming performances, a precise model for magnetic thrust bearing system was built and combined with the V-Gap metric and the generalized stability margin to design H controller. First, the V-Gap metric and the generalized stability margin were introduced. Then, the precise model of magnetic thrust bearing system was built and the system parameter uncertainties were analyzed based on the V-Gap metric. Finally, based on the mixed weighted sensitivity Hcontrol method, the controller design method based on the generalized stability margin was proposed, and its rationality was verified by experiments. The results showed that the designed H controller had better robustness and position tracking performance.

Key words: controller design, generalized stability margin, V-Gap metric, position tracking, magnetic thrust bearing system, parameter uncertainties

中图分类号: 

  • TP273
[1] 唐茂, 周瑾, 崔恒斌. 磁悬浮离心式压缩机的推力轴承喘振控制[J]. 自动化仪表, 2017, 38(5): 15-19. TANG Mao, ZHOU Jin, CUI Hengbin. Surge control of the centrifugal compressor with magnetic thrust bearing [J]. Process Automation Instrumentation, 2017, 38(5):15-19.
[2] 王恩平, 黄琳, 耿志勇. 一类参数不确定性系统的鲁棒控制[J]. 自动化学报, 2001, 27(1):70-74. WANG Enping, HUANG Lin, GENG Zhiyong. Robust stabilization for a class of system with parametric uncertainties[J]. Acta Automatica Sinica, 2001, 27(1): 70-74.
[3] 李蒙, 石泳, 刘莉. 基于鲁棒H的无人机飞行控制系统设计及实现[J]. 北京理工大学学报, 2016, 36(8):807-812. LI Meng, SHI Yong, LIU Li. Development of UAV auto pilot based on robust H theory[J]. Transaction of Beijing Institute of Technology, 2016, 36(8): 807-812.
[4] 周丽娜, 刘晓华. 不确定中立型随机时滞系统的鲁棒记忆非脆弱H控制[J]. 山东大学学报(工学版), 2013, 43(3): 49-56. ZHOU Lina, LIU Xiaohua. Robust memory state feedback non-fragile H control of an uncertain neutral stochastic time-delay systems[J]. Journal of Shandong University(Engineering Science), 2013, 43(3): 49-56.
[5] 刘林, 纪多红, 唐强. V-Gap度量及其在飞行控制律评估中的应用[J]. 航空学报, 2007, 28(4):930-93. LIU Lin, JI Duohong, TANG Qiang. V-Gap metric and its application to clearance of flight control laws[J]. Acta Aeronautica ET Astronautica Sinica, 2007, 28(4):930-93.
[6] VINNICOMBE G. The robustness of feedback systems with bounded complexity controllers[J]. IEEE Transactions on Automatic Control, 2002, 41(6):795-803.
[7] DOYLE J. Analysis of feedback systems with structured uncertainties[J]. IEE Proceedings D-Control Theory and Applications, 1982, 129(6):242-250.
[8] VINNICOMBE G. A V-Gap distance for uncertain and nonlinear systems[C] //Proceedings of the 38th Conference on Decision and Control. Phoenix, USA: IEEE, 1999.
[9] VINNICOMBE G. Uncertainty and feedback H loop shaping and the V-Gap metric[C] //International Conference on Fuzzy Systems & Knowledge Discovery. Melbourne, Australia: IEEE, 2001:1438-1441.
[10] LI G. Robust stabilization of rotor-active magnetic bearing systems[D]. Virginia, USA: University of Virginia, 2007.
[11] 宗群, 窦立谦, 刘文静. 基于Vinnicombe距离的迭代辨识与控制设计[J]. 自动化学报, 2008, 34(11):1431-1436. ZONG Qun, DOU Liqian, LIU Wenjing. Iterative identification and control design based on Vinnicombe distance[J]. Acta Automatica Sinica, 2008, 34(11): 1431-1436.
[12] 刘斌, 王常虹, 李伟. 间隙度量与跟踪系统中的鲁棒控制器设计[J]. 控制与决策, 2010, 25(11):1713-1718. LIU Bin, WANG Changhong, LI Wei. Gap metric and robust controller design in tracking systems[J]. Control and Decision, 2010, 25(11): 1713-1718.
[13] GENG Lihui, CUI Shigang, ZHAO Li. Frequency-domain worst-case identification of multiple input multiple output errors-in-variables models[J]. Control Theory and Applications, 2016, 33(10): 1366-1372.
[14] 顾晓宇. 基于V-Gap度量的迭代辨识与控制方法研究[D]. 天津:天津大学, 2007. GU Xiaoyu. Research on iterative identification and control method based on V-Gap metric [D]. Tianjin: Tianjin University, 2007.
[15] GlOVER K, VINNICOMBE G, PAPAGEORIOU G. Guaranteed multi-loop stability margins and the gap metric[C] //Decision and Control, 2000. Proceedings of the IEEE Conference on. Sydney, Australia: IEEE, 2000, 4: 4084-4085.
[16] STEELE J, VINNICOMBE G. Advanced techniques for clearance of flight control laws[M]. Berlin & Heidelberg, Germany: Springer-Verlag, 2002.
[17] 孙云. 磁悬浮轴承控制系统研究[D]. 南京: 南京理工大学, 2014. SUN Yun. Research on magnetic bearing control system [D]. Nanjing: Nanjing University of Science and Technology, 2014.
[18] 谢振宇, 徐龙祥, 李迎,等. 磁悬浮轴承转子系统动态特性的试验研究[J]. 航空动力学报, 2004, 19(1):30-37. XIE Zhenyu, XU Longxiang, LI Ying, et al. Analysis of radial dynamic characteristics of magnetic bearing system by excitation test[J]. Journal of Aerospace Power, 2004, 19(1): 30-37.
[19] CHU K C, WANG Y, WILSON J, et al. Modeling and control of a magnetic bearing system[C] //American Control Conference. Baltimore, USA: IEEE, 2010: 2206-2211.
[20] 李书鹏. 磁悬浮轴承系统的鲁棒H控制研究[D]. 南京:南京航空航天大学, 2007. LI Shupeng. Robust H control of magnetic bearing system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007.
[21] 王军, 徐龙祥. 磁悬浮轴承开关功率放大器等效数学模型[J]. 电工技术学报, 2010, 25(4): 53-58. WANG Jun, XU Longxiang. Equivalent mathematical models of switch power amplifier for magnetic bearing[J]. Transactions of China Electrotechnical Society, 2010, 25(4): 53-58.
[22] MUSHI S E. Robust control of rotor dynamic instability in rotating machinery supported by active magnetic bearings[D]. Virginia, USA: University of Virginia, 2012.
[23] 吕志民, 周茂林. 使用Pade近似式处理数字控制系统中的纯滞后[J]. 中山大学学报(自然科学版), 2001, 40(1): 114-115. LYU Zhiming, ZHOU Maolin. Manipulation of the pure time delay in digital control system applying Pade approximation[J]. Acta Scientiarum Naturalium Universititatis Sunyatseni, 2001, 40(1):114-115.
[24] 杨志勇, 王广雄. MIMO系统混合灵敏度设计的问题[J]. 控制理论与应用, 1999, 16(2): 238-240. YANG Zhiyong, WANG Guangxiong. Problem with mixed sensitivity design of MIMO system[J]. Control Theory and Applications, 1999, 16(2):238-240.
[25] CERONE V, MILANESE M, REGRUTO D. Yaw stability control design through a mixed-sensitivity approach [J]. IEEE Transactions on Control Systems Technology, 2009, 17(5): 1096-1104.
[1] 杜红伟,王从庆 . 基于Hodgkin-Huxley模型的皮层柱侧抑制神经元群[J]. 山东大学学报(工学版), 2007, 37(6): 20-24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!