您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 79-88.doi: 10.6040/j.issn.1672-3961.0.2017.255

• • 上一篇    下一篇

一种时延多智能体系统的分布式编队

秦利国1,何潇1,周东华1,2*   

  1. 1. 清华大学自动化系, 北京 100084;2. 山东科技大学电气与自动化工程学院, 山东 青岛 266590
  • 收稿日期:2017-02-10 出版日期:2017-10-20 发布日期:2017-02-10
  • 通讯作者: 周东华(1963— ),男,江苏江阴人,教授,博士,主要研究方向为动态系统的故障诊断与容错控制,故障预测与最优维护技术.E-mail: zdh@mail.tsinghua.edu.cn E-mail:qinlg11@mails.tsinghua.edu.cn
  • 作者简介:秦利国(1988— ),男,山东莱芜人,博士研究生,主要研究方向为分布式控制,多智能体系统故障诊断和容错控制.E-mail: qinlg11@mails.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61490701,61210012,61290324,61473163,61522309);中国山东泰山学者研究基金资助项目;清华大学自主科研青年基金资助项目(2013Z09)

A new distributed formation for multi-agent systems with constant time delays

QIN Liguo1, HE Xiao1, ZHOU Donghua1,2*   

  1. 1. Department of Automation, Tsinghua University, Beijing 100084, China;
    2. College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
  • Received:2017-02-10 Online:2017-10-20 Published:2017-02-10

摘要: 针对具有定常时延的二阶积分器多智能体系统,提出一种不依赖时延的分布式编队控制律。通过引入编队误差的积分信息,设计一种新的分布式比例积分微分控制律。和当前的编队控制律相比,分布式比例积分微分控制律具有对部分恒偏差故障鲁棒的特性。利用Nyquist稳定性判据,通过分析系统开环传递函数的幅相曲线特性,给出独立于时延的编队控制律存在的充要条件。仿真结果验证了该方法的有效性。

关键词: 编队系统, 分布式控制, Nyquist稳定性判据, 频域分析, 时延, 传递函数

Abstract: A new delay independent distributed formation control law was presented for a network of second-order integrators subject to constant time delays. A new augment variable which represented the integration of distributed formation errors was introduced to improve the robustness of the formation control law. Different from current distributed control laws, the presented control law was robust to some constant bias faults. A condition on the existence of the delay independent formation control law was proposed by using Nyquist stability criterion. The simulation demonstrated the effectiveness of the control law.

Key words: distributed control, frequency-domain analysis, formation, time delays, Nyquist stability criterion, transfer function

中图分类号: 

  • TP277
[1] BEARD R W, LAWTON J, HADAEGH F Y. A coordination architecture for spacecraft formation control[J]. IEEE Transactions on Control Systems Technology, 2001, 9(6): 777-790.
[2] BALCH T, ARKIN R C. Behavior-based formation control for multirobot teams[J]. IEEE Transactions on Robotics and Automation, 1998, 14(6): 926-939.
[3] REN W. Consensus strategies for cooperative control of vehicle formations[J]. IET Control Theory & Applications, 2007, 1(2): 505-512.
[4] LIN Z, FRANCIS B, MAGGIORE M. Necessary and sufficient graphical conditions for formation control of unicycles[J]. IEEE Transactions on Automatic Control, 2005, 50(1): 121-127.
[5] OH K K, AHN H S. Formation control of mobile agents based on distributed position estimation[J]. IEEE Transactions on Automatic Control, 2013, 58(3): 737-742.
[6] 吕淑玲, 侍红军, 刘峰. 主从多智能体网络快速随机一致性[J]. 山东大学学报(理学版), 2014, 49(1): 65-70. LYU Shuling, SHI Hongjun, LIU Feng. Fast stochastic consensus of leader-following multi-agent network[J]. Journal of Shandong University(Nature Science), 2014, 49(1):65-70.
[7] QIN L, HE X, ZHOU D H. A survey of fault diagnosis for swarm systems[J]. Systems Science & Control Engineering, 2014, 2(1): 13-23.
[8] 王强, 王玉振. Hamilton 框架下 Flocking 问题控制协议的设计[J]. 山东大学学报(理学版), 2011, 46(7): 70-76. WANG Qiang, WANG Yuzheng. Flocking control protocol design based on a Hamiltonian framework[J]. Journal of Shandong University(Nature Science), 2011, 46(7):70-76.
[9] QIN L, HE X, ZHOU Y, et al. Fault-tolerant control for a quadrotor unmanned helicopter subject to sensor faults[C] //IEEE Conference on Unmanned Aircraft Systems(ICUAS)2016. [s. n.] : IEEE, 2016: 1280-1286.
[10] 孙一冰, 付敏跃, 王炳昌, 等. 大规模动态系统的分布式状态估计算法[J]. 山东大学学报(工学版), 2016, 46(6): 62-68. SUN Yibing, FU Minyue, WANG Bingchang, et al. Distributed state estimation algorithm for large-scale dynamic systems[J]. Journal of Shandong University(Engineering Science), 2016, 46(6):62-68.
[11] EGERSTEDT M, HU X. Formation constrained multi-agent control[J]. IEEE Transactions on Robotics and Automation, 2001, 17(6): 947-951.
[12] CHEN Y Q, WANG Z. Formation control: a review and a new consideration[C] //IEEE International Conference on Intelligent Robots and Systems 2005:IROS 2005. Edmonton, Canada: IEEE, 2005: 3181-3186.
[13] DAS A K, FIERRO R, KUMAR V, et al. A vision-based formation control framework[J]. IEEE Transactions on Robotics and Automation, 2002, 18(5): 813-825.
[14] DONG X, YU B, SHI Z, et al. Time-varying formation control for unmanned aerial vehicles: theories and applications[J]. IEEE Transactions on Control Systems Technology, 2015, 23(1): 340-348.
[15] OLFATI S R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533.
[16] SUN Y G, WANG L. Consensus of multi-agent systems in directed networks with nonuniform time-varying delays[J]. IEEE Transactions on Automatic Control, 2009, 54(7): 1607-1613.
[17] XIAO F, WANG L. Consensus protocols for discrete-time multi-agent systems with time-varying delays[J]. Automatica, 2008, 44(10): 2577-2582.
[18] LIN P, JIA Y. Multi-agent consensus with diverse time-delays and jointly-connected topologies[J]. Automatica, 2011, 47(4): 848-856.
[19] ABDESSAMEUD A, TAYEBI A. Formation control of VTOL unmanned aerial vehicles with communication delays[J]. Automatica, 2011, 47(11): 2383-2394.
[20] REZAEE H, ABDOLLAHI F, TALEBI H A. H based motion synchronization in formation flight with delayed communications[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6175-6182.
[21] DONG X, XI J, LU G, et al. Formation control for high-order linear time-invariant multiagent systems with time delays[J]. IEEE Transactions on Control of Network Systems, 2014, 1(3): 232-240.
[22] TIAN Y P, LIU C L. Consensus of multi-agent systems with diverse input and communication delays[J]. IEEE Transactions on Automatic Control, 2008, 53(9): 2122-2128.
[23] TIAN Y P, LIU C L. Robust consensus of multi-agent systems with diverse input delays and asymmetric interconnection perturbations[J]. Automatica, 2009, 45(5): 1347-1353.
[24] MÜNZ U, PAPACHRISTODOULOU A, ALLGOWER F. Delay robustness in consensus problems[J]. Automatica, 2010, 46(8): 1252-1265.
[25] HOU W, FU M, ZHANG H, et al. Consensus conditions for general second-order multi-agent systems with communication delay[J]. Automatica, 2017, 75: 293-298.
[1] 赵英弘,何潇,周东华. 一类含有传感器故障的网络化系统容错估计[J]. 山东大学学报(工学版), 2017, 47(5): 71-78.
[2] 洪晓芳1,2,王玉振1*, 魏爱荣1. 一类执行器饱和非线性Hamilton网络控制系统H∞控制器设计[J]. 山东大学学报(工学版), 2014, 44(1): 49-56.
[3] 石海东,胡冬梅,王晓东. 分布式天线系统中信道时延扩展的统计分析[J]. 山东大学学报(工学版), 2012, 42(1): 133-142.
[4] 王心一1,杜光2*. 降采样固定时延估算法在声回波对消系统中的应用[J]. 山东大学学报(工学版), 2011, 41(3): 42-45.
[5] 鉴萍,李歧强 . 力反馈遥操作机器人系统的内模控制[J]. 山东大学学报(工学版), 2006, 36(5): 49-53 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!