山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 50-58.doi: 10.6040/j.issn.1672-3961.0.2016.462
于曰伟1,周长城1*,赵雷雷1,邢玉清2,石沛林1
YU Yuewei1, ZHOU Changcheng1*, ZHAO Leilei1, XING Yuqing2, SHI Peilin1
摘要: 针对主动悬架线性二次高斯控制(linear-quadratic-Gaussian control, LQG)控制器,提供一种快速确定其最佳控制加权系数及最优控制力的方法。 通过车辆行驶平顺性评价指标分析,利用无量纲归一化思想建立主动悬架最优控制目标函数,给出平顺性加权系数与控制加权系数间的关系;根据主动悬架力学模型,利用Newmark-β显式积分法,建立平顺性加权系数仿真分析模型。以路面不平度作为输入激励,以轮胎动位移和悬架动挠度为约束条件,借鉴交替迭代思想建立交替迭代优化算法,建立主动悬架LQG控制加权系数及控制力的优化方法。通过与现有LQG控制器设计方法的对比分析,对本设计方法的先进性和可靠性进行仿真验证,结果表明设计的LQG控制器能够显著改善车辆的乘坐舒适性。
中图分类号:
[1] 丁能根, 于贵珍. 车辆动力学及其控制[M]. 哈尔滨: 哈尔滨工业大学出版社, 2009. [2] 喻凡, 林逸. 车辆系统动力学[M]. 北京: 机械工业出版社, 2005. [3] BREZAS P, SMITH M C, HOULT W. A clipped-optimal control algorithm for semi-active vehicle suspensions: theory and experimental evaluation[J]. Automatica, 2015, 53:188-194. [4] YU M, DONG X M, CHOI S B, et al. Human simulated intelligent control of vehicle suspension system with MR dampers[J]. Journal of Sound and Vibration, 2009, 319(3-5): 753-767. [5] WILLIGENBURG G V, KONING D. On the synthesis of time varying LQG weights and noises along optimal control and state trajectories[J]. Optim Control Appl Meth, 2006, 27(27):137-160. [6] ELMADANY M M, ABDULJABBAR Z, FODA M. Optimal preview control of active suspensions with integral constraint[J]. Journal of Vibration & Control, 2003, 9(12): 1377-1400. [7] KOCH G, FRITSCH O, LOHMANN B. Potential of low band-width active suspension control with continuously variable damper[J]. Control Engineering Practice, 2010, 18(11): 1251-1262. [8] 兰波, 喻凡, 刘娇蛟. 主动悬架LQG控制器设计[J]. 系统仿真学报, 2003, 15(1): 130-140. LAN Bo, YU Fan, LIU Jiaojiao. The design of LQG controller of active suspension[J]. Journal of System Simulation, 2003, 15(1):130-140. [9] CAO Z L. Semi-active hydro-pneumatic suspension accurate linearization LQG control based on AHP[J]. IJAMML, 2014, 1(2): 181-196. [10] CHAI L J, SUN T. The design of LQG controller for active suspension based on analytic hierarchy process[J]. Mathematical Problems in Engineering, 2010, 2010(1024-123X):242-256. [11] CHEN S A, HE R, LIU H G, et al. Probe into necessity of active suspension based on LQG control[J]. Physics Procedia, 2012, 25(22):932-938. [12] 柴陵江, 孙涛, 冯金芝, 等. 基于层次分析法的主动悬架LQG控制器设计[J]. 汽车工程, 2010, 32(8): 712-718. CHAI Lingjiang, SUN Tao, FENG Jinzhi, et al. Design of the LQG controller for active suspension system based on analytic hierarchy process[J]. Automotive Engineering, 2010, 32(8): 712-718. [13] 黄卫忠, 高国琴. 基于遗传算法的最优控制加权阵的设计[J]. 计算机测量与控制, 2003, 11(10): 761-762. HUANG Weizhong, GAO Guoqin. Design of weighting matrix for optimal controller based on genetic algorithm[J]. Computer Measurement & Control, 2003, 11(10): 761-762. [14] KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony(ABC)algorithm[J]. Journal of Global Optimization, 2007, 39(3): 459-471. [15] KARABOGA D, BASTURK B. On the performance of artificial bee colony(ABC)algorithm[J]. Applied Soft Computing, 2008, 8(1): 687-697. [16] 张志飞, 刘建利, 徐中明, 等. 基于改进层次分析法的半主动悬架LQG控制器的设计[J]. 汽车工程, 2012, 34(6): 528-533. ZHANG Zhifei, LIU Jianli, XU Zhongming, et al. Design of LQG controller for semi-active suspension based on improved analytic hierarchy process[J]. Automotive Engineering, 2012, 34(6): 528-533. [17] 陈双, 宗长富. 车辆主动悬架的遗传粒子群LQG控制方法[J]. 汽车工程, 2015, 37(2): 189-193. CHEN Shuang, ZONG Changfu. Genetic particle swarm LQG control of vehicle active suspension[J]. Automotive Engineering, 2015, 37(2): 189-193. [18] 张立军, 张天侠. 车辆四轮相关时域随机输入通用模型的研究[J]. 农业机械学报, 2005, 36(12): 29-31. ZHANG Lijun, ZHANG Tianxia. Study on general model of random inputs of the vehicle with four wheels correlated in time domain[J]. Transactions of the Chinese Society of Agricultural Machinery, 2005, 36(12):29-31. |
No related articles found! |
|