山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 78-84.doi: 10.6040/j.issn.1672-3961.0.2015.362
周绍伟
ZHOU Shaowei
摘要: 研究了一类随机线性It(^overo)Markov跳跃系统的有限时间稳定性问题。首先,定义了系统的有限时间随机稳定和有限时间有界;其次,给出了系统有限时间随机稳定的充分必要条件,利用线性矩阵不等式技术设计了状态反馈能稳控制器;最后,通过数值例子和系统仿真验证了方法的有效性。
中图分类号:
[1] MAO X R, YUAN C G. Stochastic differential equations with Markovian switching[M]. London: Imperial College Press, 2006. [2] YUAN C G, LYGEROS J. On the exponential stability of switching diffusion processes[J]. IEEE Transactions on Automatic Control, 2005, 50(9):1422-1426. [3] YUAN C G, MAO X R. Robust stability and controllability of stochastic differential delay equations with Markovian switching[J]. Automatica, 2004, 40(3):343-354. [4] SHI P, MAHMOUD M, NGUANG S K, et al. Robust filtering for jumping systems with mode-dependent delays[J]. Signal Processing, 2006, 86(1):140-152. [5] COSTA O L V, PAULO W L. Generalized coupled algebraic Riccati equations for discrete-time Markov jump with multiplicative noise systems[C] //Proceedings of the 17th International Federation of Automatic Control World Congress. Seoul: International Federation of Automatic Control, 2008:13480-13485. [6] DOROTO P. Short time stability in linear time-varying systems[C] //Proceedings of the IRE International Convention Record. New York:the IRE International Convention, 1961:83-87. [7] AMATO F, ARIOLA M, DORATO P. Finite-time control of linear systems subject to parametric uncertainties and disturbances[J]. Automatica, 2001, 37(9):1459-1463. [8] AMATO F, ARIOLA M, COSENTINO C. Finite-time stabilization via dynamic output feedback[J]. Automatica, 2006, 42(2):337-342. [9] 冯智辉,邓飞其,刘文辉.一类二次型离散系统的有限时间稳定与镇定[J].华南理工大学学报(自然科学版), 2015, 43(1):9-14. FENG Zhihui, DENG Feiqi, LIU Wenhui. Finite-time stability and stabilization for a class of quadratic discrete-time systems[J]. Journal of South China University of Technology(Natural Science Edition), 2015, 43(1):9-14. [10] 宋申民,郭永,李学辉.航天器姿态跟踪有限时间饱和控制[J].控制与决策, 2015, 30(11):2004-2008. SONG Shenmin, GUO Yong, LI Xuehui. Finite-time attitude tracking control for spacecraft with input saturation[J]. Control and Decision, 2015, 30(11):2004-2008. [11] 董琦,宗群,王芳,等.基于光滑二阶滑模的可重复使用运载器有限时间再入姿态控制[J].控制理论与应用, 2015, 32(4): 448-455. DONG Qi, ZONG Qun, WANG Fang, et al. Finite time smooth second-order sliding-mode controller design for reentry reusable launch vehicle[J]. Control Theory and Applications, 2015, 32(4):448-455. [12] ZHANG W H, AN X Y. Finite-time control of linear stochastic systems[J]. International Journal of Innovative Computing, Information and Control, 2008, 4(3):689-696. [13] 陈云,石伟,邹洪波,等.随机时延系统有限时间静态输出反馈弹性控制[C] //第33届中国控制会议论文集.南京, 中国: 中国控制会议, 2014:4337-4341. CHEN Yun, SHI Wei, ZOU Hongbo, et al. Finite-time static output feedback resilient control of stochastic time-delay systems[C] //Proceedings of the 33rd Chinese Control Conference. Nanjing, China: the CCC, 2014:4337-4341. [14] YAN Z G, ZHANG G S, ZHANG W H. Finite-time stability and stabilization of linear It(^overo)stochastic systems with state and control-dependent noise[J]. Asian Journal of Control, 2013, 15(1):270-281. [15] YAN Z G, ZHANG G S, WANG J K, et al. State and output feedback finite-time guaranteed cost control of linears It(^overo)tochastic systems[J]. Journal of Systems Science and Complexity, 2015, 28(4):813-829. [16] NI Y H, ZHANG W H, FANG H T. On the observability and detectability of linear stochastic systems with Markov jumps and multiplicative noise[J]. Journal of Systems Science and Complexity, 2010, 23(1):102-115. [17] OKSENDAL B. Stochastic differential equations: an introduction with applications [M]. Berlin: Springer, 2003. |
[1] | 武炎明,王瑞云,王占山. 基于中间变量观测器的多智能体故障检测[J]. 山东大学学报(工学版), 2017, 47(5): 96-102. |
[2] | 李小华, 严慰, 刘洋. 广义扩展大系统的鲁棒分散有限时间关联镇定[J]. 山东大学学报(工学版), 2015, 45(6): 16-28. |
[3] | 沈艳军1,吴超艳2. 一类链式系统部分变元渐近稳定、有限时间稳定观测器设计[J]. 山东大学学报(工学版), 2013, 43(6): 42-46. |
[4] | 周丽娜1,刘晓华2. 不确定中立型随机时滞系统的鲁棒记忆非脆弱H∞控制[J]. 山东大学学报(工学版), 2013, 43(3): 49-56. |
[5] | 何荣福1,肖民卿2*. 圆形区域极点约束下的δ算子时滞系统鲁棒L2-L∞控制[J]. 山东大学学报(工学版), 2013, 43(1): 69-79. |
[6] | 赵占山1,2, 张静3, 孙连坤1, 丁刚1. 有限时间收敛的滑模自适应控制器设计[J]. 山东大学学报(工学版), 2012, 42(4): 74-78. |
[7] | 杨仁明,王玉振*. 一类非线性时滞系统的有限时间稳定性[J]. 山东大学学报(工学版), 2012, 42(2): 36-44. |
[8] | 马世敏,王玉振. 一类广义Hamilton系统的有限时间稳定性及其在仿射非线性系统控制设计中的应用[J]. 山东大学学报(工学版), 2011, 41(2): 119-125. |
[9] | 刘国彩,刘玉常,鞠培军. 变时滞神经网络的时滞相关全局渐近稳定新判据[J]. 山东大学学报(工学版), 2010, 40(4): 53-56. |
[10] | 冯刚, M. Chen. 基于双线性矩阵不等式的H∞无穷离散时间模糊控制器设计(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 37-51. |
[11] | 焦建民1 ,孙小军1 ,吴保卫2 . 带有非线性扰动的不确定奇异时滞系统的保性能控制[J]. 山东大学学报(工学版), 2009, 39(2): 64-69. |
[12] | 邓修成,沈艳军,方胜乐 . 多输入-多输出线性系统有限时间观测器设计方法[J]. 山东大学学报(工学版), 2008, 38(4): 17-21 . |
[13] | 王岩青,钱承山,姜长生 . 中立型不确定变时滞系统的一个时滞相关鲁棒稳定性判据[J]. 山东大学学报(工学版), 2008, 38(1): 116-120 . |
[14] | 辛道义,刘允刚 . 非线性系统有限时间稳定性分析与控制设计[J]. 山东大学学报(工学版), 2007, 37(3): 24-30 . |
[15] | 王进野,姚瑞英,张纪良,王其军 . 一类模糊双曲正切模型稳定性控制[J]. 山东大学学报(工学版), 2007, 37(2): 63-66 . |
|