山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 22-27.doi: 10.6040/j.issn.1672-3961.0.2015.222
王娜1,陈国栋2,陈怡2
WANG Na1, CHEN Guodong2, CHEN Yi2
摘要: 针对现有血流真实感绘制中采用的动力学模型精度较低的问题,提出一种基于改进光滑粒与动力学(smoothed particle hydrodynamics, SPH)的皮肤表面血流模拟算法。首先对血液模拟算法进行分析,选取Casson流体作为血液流动现象的流体动力学模型;然后,根据Casson流体的动力学方程的特点,对传统的SPH方法进行改进,并用改进后的方法对血液流动现象进行数值计算;最后将得到的血液粒子运动学信息用于模拟皮肤表面的血流过程。试验结果证明,该方法降低了传统方法的复杂度,提高程序的计算精度,为虚拟手术中对皮肤切口出血的仿真研究提供了新思路。
中图分类号:
[1] 赖颢升. 虚拟手术中流血效果模拟研究[D]. 济南:山东大学, 2014. LAI Haosheng. Study of bleeding simulation in virtual surgery[D]. Jinan: Shandong University, 2014. [2] RIANTO S, LI L. Fluid dynamic visualisations of cuttingsbleeding for virtual reality heart beating surgery simulation[C] //Proceedings of the 33rd Australasian Conference on Computer Science. Darlinghurst, Australia: Australian Computer Society, 2010:53-60. [3] QIN J, PANG W M, NGUYEN B P, et al. Particle-based simulation of blood flow and vessel wall interactions in virtual surgery[C] //Proceedings of the 2010 Symposium on Information and Communication Technology. New York, USA: ACM, 2010:128-133. [4] ITANI M A, Schiller U D, Schmieschekb S, et al. An automated multiscale ensemble simulation approach for vascular blood flow[J]. Journal of Computational Science, 2015(9):150-155. [5] 黄雷,肖双九, 顾力栩, 等. 虚拟手术训练系统的血流模拟[J]. 计算机应用与软件,2011,28(1):65-68. HUANG Lei, XIAO Shuangjiu, GU Lixu. Blood flow simulation in virtual surgery training system[J]. Computer Applications and Software, 2011, 28(1):65-68. [6] 施鹏, 熊岳山, 徐凯, 等. 虚拟肝脏手术中实时动态渗血效果模拟[J]. 计算机应用, 2013, 33(10): 2911-2913. SHI Peng, XIONG Yueshan, XU Kai, et al. Dynamic and real-time errhysis effect simulation in virtual liver surgery[J].Journal of Computer Applications, 2013, 33(10):2911-2913. [7] 邱文超, 黄敏, 鲍苏苏, 等. 虚拟手术中血流特效场景 仿真的研究[J]. 计算机应用与软件, 2014, 31(5):46-49,162. QIU Wenchao, HUANG Min, BAO Susu, et al. Study on blood flow effects scene simulation in virtual surgery[J]. Computer Applications and Software, 2014, 31(5): 46-49,162. [8] 郑广超. 虚拟手术系统中模拟手术场景的渲染和平台 的构建[D]. 上海: 上海交通大学, 2008. ZHENG Guangchao. Simulation rendering of surgical scene and platform construction in virtual surgery system[D]. Shanghai: Shanghai Jiao Tong University, 2008. [9] 杨秀峰, 刘谋斌. 光滑粒子动力学SPH方法应力不稳定性的一种改进方案[J]. 物理学报, 2012, 61(22):255-262. YANG Xiufeng, Liu Moubin. Improvement on stress instability in smoothed particle hydrodynamics[J]. Acta Physica Sinica, 2012, 61(22):255-262. [10] 刘谋斌, 宗智, 常建忠. 光滑粒子动力学方法的发展与应用[J]. 力学进展, 2011, 41(2):217-234. LIU Moubin, ZONG Zhi, CHANG Jianzhong. Developments and applications of smoothed particle hydrodynamics[J]. Advances in Mechanics, 2011, 41(2):217-234. [11] LASIECKA I, TRIGGIANI R. Stabilization to an equilibrium of the Navier—Stokes equations with tangential action of feedback controllers[J]. Nonlinear Analysis: Theory, Methods & Applications, 2015, 121:424-446. [12] PEARSON J W. Preconditioned iterative methods for Navier—Stokes control problems[J]. Journal of Computational Physics, 2015, 292:194-207. [13] AKBAR N S. Influence of magnetic field on peristaltic flow of a Casson fluid in an asymmetric channel: application in crude oil refinement[J]. Journal of Magnetism and Magnetic Materials, 2015, 378:463-468. [14] PONALAGUSAMY R, SELVI R T. A study on two-layered model(Casson—Newtonian)for blood flow through an arterial stenosis: axially variable slip velocity at the wall[J].Journal of the Franklin Institute, 2011, 348(9):2308-2321. [15] KOMECH A, KOPYLOVA E. On eigenfunction expansion of solutions to the hamilton equations[J]. Journal of Statistical Physics, 2014, 154(1-2):503-521. [16] MEHDI J, YUSUF Y. Rotation in four dimensions via generalized Hamilton operators[J]. Kuwait Journal of Science, 2013, 40(1):67-79. [17] QIN Ruibin, KRIVODONOVA L. A discontinuous Galerkin method for solutions of the Euler equations on Cartesian grids with embedded geometries[J]. Journal of Computational Science, 2013, 4(1-2):24-35. [18] WANG Qiuju, REN Yuxin. An accurate and robust finite volume scheme based on the spline interpolation for solving the Euler and Navier—Stokes equations on non-uniform curvilinear grids[J]. Journal of Computational Physics, 2015, 284:648-667. [19] LIEDEKERKE P V, SMEETS B, ODENTHAL T, et al. Solving microscopic flow problems using Stokes equations in SPH[J]. Computer Physics Communications, 2013, 184(7):1686-1696. [20] CEBRAL J R, LOHNER R. Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique[J]. IEEE Transaction on Medical Imaging, 2005, 24(4):468-476. |
[1] | 包书哲1,2,朱月澴1,王春立1*. 基于fMRI的图像底层特征关注研究[J]. 山东大学学报(工学版), 2014, 44(1): 24-28. |
[2] | 谢志华. 一种新的血流建模方法及其在红外人脸识别中的应用[J]. 山东大学学报(工学版), 2013, 43(5): 1-5. |
|