您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 22-27.doi: 10.6040/j.issn.1672-3961.0.2015.222

• 机器学习与数据挖掘 • 上一篇    下一篇

基于改进SPH的皮肤表面血流模拟算法

王娜1,陈国栋2,陈怡2   

  1. 1.福建师范大学福清分校电子与信息工程学院, 福建 福清 350300;
    2.福州大学物理与信息工程学院, 福建 福州 350116
  • 收稿日期:2015-07-10 出版日期:2016-02-20 发布日期:2015-07-10
  • 作者简介:王娜(1978-),女,河北保定人,副教授,硕士,主要研究方向为计算机图形学和虚拟现实.E-mail:studyres@126.com
  • 基金资助:
    国家自然科学基金资助项目(61471124);福建省自然科学基金项目(2013J05090);福建省科技计划重点项目(2011H0027);福建省中青年教师教育科研项目(JA15574)

A bleeding simulation algorithm for skin surface based on improved SPH method

WANG Na1, CHEN Guodong2, CHEN Yi2   

  1. 1. School of Electronics and Information Engineering, Fuqing Branch of Fujian Normal University, Fuqing 350300, Fujian, China;
    2. College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
  • Received:2015-07-10 Online:2016-02-20 Published:2015-07-10

摘要: 针对现有血流真实感绘制中采用的动力学模型精度较低的问题,提出一种基于改进光滑粒与动力学(smoothed particle hydrodynamics, SPH)的皮肤表面血流模拟算法。首先对血液模拟算法进行分析,选取Casson流体作为血液流动现象的流体动力学模型;然后,根据Casson流体的动力学方程的特点,对传统的SPH方法进行改进,并用改进后的方法对血液流动现象进行数值计算;最后将得到的血液粒子运动学信息用于模拟皮肤表面的血流过程。试验结果证明,该方法降低了传统方法的复杂度,提高程序的计算精度,为虚拟手术中对皮肤切口出血的仿真研究提供了新思路。

关键词: Casson模型, 虚拟手术, 动力学模型, 光滑粒子动力学, 血流

Abstract: Aiming at low dynamic model precision problem of the current blood flow realistic graphics rendering methods, a bleeding simulation algorithm for skin surface based on improved SPH method was proposed. First, some blood flow simulation algorithms were analyzed and the Casson model was selected as the fluid dynamics model of blood flow. Second, according to the characteristics of the dynamic equation of Casson fluid, the traditional SPH method was improved. Third, the improved method was used to calculate the blood flow. Finally, the obtained blood particle kinematics information was used to simulate the flow of the skin surface. The experimental results showed that the improved SPH method could reduce the complexity of the traditional method and improve the accuracy of the program, which would provide a new method for the skin incision bleeding simulation in virtual surgery.

Key words: blood flow, dynamic model, Casson model, virtual surgery, smoothed particle hydrodynamics

中图分类号: 

  • TP391.41
[1] 赖颢升. 虚拟手术中流血效果模拟研究[D]. 济南:山东大学, 2014. LAI Haosheng. Study of bleeding simulation in virtual surgery[D]. Jinan: Shandong University, 2014.
[2] RIANTO S, LI L. Fluid dynamic visualisations of cuttingsbleeding for virtual reality heart beating surgery simulation[C] //Proceedings of the 33rd Australasian Conference on Computer Science. Darlinghurst, Australia: Australian Computer Society, 2010:53-60.
[3] QIN J, PANG W M, NGUYEN B P, et al. Particle-based simulation of blood flow and vessel wall interactions in virtual surgery[C] //Proceedings of the 2010 Symposium on Information and Communication Technology. New York, USA: ACM, 2010:128-133.
[4] ITANI M A, Schiller U D, Schmieschekb S, et al. An automated multiscale ensemble simulation approach for vascular blood flow[J]. Journal of Computational Science, 2015(9):150-155.
[5] 黄雷,肖双九, 顾力栩, 等. 虚拟手术训练系统的血流模拟[J]. 计算机应用与软件,2011,28(1):65-68. HUANG Lei, XIAO Shuangjiu, GU Lixu. Blood flow simulation in virtual surgery training system[J]. Computer Applications and Software, 2011, 28(1):65-68.
[6] 施鹏, 熊岳山, 徐凯, 等. 虚拟肝脏手术中实时动态渗血效果模拟[J]. 计算机应用, 2013, 33(10): 2911-2913. SHI Peng, XIONG Yueshan, XU Kai, et al. Dynamic and real-time errhysis effect simulation in virtual liver surgery[J].Journal of Computer Applications, 2013, 33(10):2911-2913.
[7] 邱文超, 黄敏, 鲍苏苏, 等. 虚拟手术中血流特效场景 仿真的研究[J]. 计算机应用与软件, 2014, 31(5):46-49,162. QIU Wenchao, HUANG Min, BAO Susu, et al. Study on blood flow effects scene simulation in virtual surgery[J]. Computer Applications and Software, 2014, 31(5): 46-49,162.
[8] 郑广超. 虚拟手术系统中模拟手术场景的渲染和平台 的构建[D]. 上海: 上海交通大学, 2008. ZHENG Guangchao. Simulation rendering of surgical scene and platform construction in virtual surgery system[D]. Shanghai: Shanghai Jiao Tong University, 2008.
[9] 杨秀峰, 刘谋斌. 光滑粒子动力学SPH方法应力不稳定性的一种改进方案[J]. 物理学报, 2012, 61(22):255-262. YANG Xiufeng, Liu Moubin. Improvement on stress instability in smoothed particle hydrodynamics[J]. Acta Physica Sinica, 2012, 61(22):255-262.
[10] 刘谋斌, 宗智, 常建忠. 光滑粒子动力学方法的发展与应用[J]. 力学进展, 2011, 41(2):217-234. LIU Moubin, ZONG Zhi, CHANG Jianzhong. Developments and applications of smoothed particle hydrodynamics[J]. Advances in Mechanics, 2011, 41(2):217-234.
[11] LASIECKA I, TRIGGIANI R. Stabilization to an equilibrium of the Navier—Stokes equations with tangential action of feedback controllers[J]. Nonlinear Analysis: Theory, Methods & Applications, 2015, 121:424-446.
[12] PEARSON J W. Preconditioned iterative methods for Navier—Stokes control problems[J]. Journal of Computational Physics, 2015, 292:194-207.
[13] AKBAR N S. Influence of magnetic field on peristaltic flow of a Casson fluid in an asymmetric channel: application in crude oil refinement[J]. Journal of Magnetism and Magnetic Materials, 2015, 378:463-468.
[14] PONALAGUSAMY R, SELVI R T. A study on two-layered model(Casson—Newtonian)for blood flow through an arterial stenosis: axially variable slip velocity at the wall[J].Journal of the Franklin Institute, 2011, 348(9):2308-2321.
[15] KOMECH A, KOPYLOVA E. On eigenfunction expansion of solutions to the hamilton equations[J]. Journal of Statistical Physics, 2014, 154(1-2):503-521.
[16] MEHDI J, YUSUF Y. Rotation in four dimensions via generalized Hamilton operators[J]. Kuwait Journal of Science, 2013, 40(1):67-79.
[17] QIN Ruibin, KRIVODONOVA L. A discontinuous Galerkin method for solutions of the Euler equations on Cartesian grids with embedded geometries[J]. Journal of Computational Science, 2013, 4(1-2):24-35.
[18] WANG Qiuju, REN Yuxin. An accurate and robust finite volume scheme based on the spline interpolation for solving the Euler and Navier—Stokes equations on non-uniform curvilinear grids[J]. Journal of Computational Physics, 2015, 284:648-667.
[19] LIEDEKERKE P V, SMEETS B, ODENTHAL T, et al. Solving microscopic flow problems using Stokes equations in SPH[J]. Computer Physics Communications, 2013, 184(7):1686-1696.
[20] CEBRAL J R, LOHNER R. Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique[J]. IEEE Transaction on Medical Imaging, 2005, 24(4):468-476.
[1] 包书哲1,2,朱月澴1,王春立1*. 基于fMRI的图像底层特征关注研究[J]. 山东大学学报(工学版), 2014, 44(1): 24-28.
[2] 谢志华. 一种新的血流建模方法及其在红外人脸识别中的应用[J]. 山东大学学报(工学版), 2013, 43(5): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程代展,李志强. 非线性系统线性化综述(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 26 -36 .
[2] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[3] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[4] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[5] 陈华鑫, 陈拴发, 王秉纲. 基质沥青老化行为与老化机理[J]. 山东大学学报(工学版), 2009, 39(2): 125 -130 .
[6] 赵延风1,2, 王正中1,2 ,芦琴1,祝晗英3 . 梯形明渠水跃共轭水深的直接计算方法[J]. 山东大学学报(工学版), 2009, 39(2): 131 -136 .
[7] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[8] 赵科军 王新军 刘洋 仇一泓. 基于结构化覆盖网的连续 top-k 联接查询算法[J]. 山东大学学报(工学版), 2009, 39(5): 32 -37 .
[9] 赵治广,王登杰,田云飞 . 基于灰色理论的路基沉降研究[J]. 山东大学学报(工学版), 2007, 37(3): 86 -88 .
[10] 姚占勇,商庆森,赵之仲,贾朝霞 . 界面条件对半刚性沥青路面结构应力分布的影响[J]. 山东大学学报(工学版), 2007, 37(3): 93 -99 .