您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2015, Vol. 45 ›› Issue (5): 58-62.doi: 10.6040/j.issn.1672-3961.0.2015.004

• • 上一篇    

直流调速系统模糊自整定分数阶内模控制

赵志涛,赵志诚*,王惠芳   

  1. 太原科技大学电子信息工程学院, 山西 太原 030024
  • 发布日期:2020-05-26
  • 通讯作者: 赵志诚(1970- ),男,山西临猗人,教授,博士,主要研究方向为先进控制及应用,计算机测控系统与装置.E-mail: zhzhich@126.com
  • 作者简介:赵志涛(1989- ),男,山东滨州人,硕士研究生,主要研究方向为先进控制与应用.E-mail: xingxianghai0@126.com. *通信作者:赵志诚(1970- ),男,山西临猗人,教授,博士,主要研究方向为先进控制及应用,计算机测控系统与装置. E-mail: zhzhich@126.com
  • 基金资助:
    山西省自然科学基金资助项目(2012011027-4);太原科技大学研究生科技创新资助项目(20145022)

Fractional order internal model control with fuzzy-tuning for DC speed regulating system

ZHAO Zhitao, ZHAO Zhicheng*, WANG Huifang   

  1. School of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi, China
  • Published:2020-05-26

摘要: 针对直流调速系统,设计了一种模糊自整定的分数阶内模控制器。首先将分数阶理论与内模控制(internal model control, IMC)相结合设计分数阶内模控制器,其参数可根据系统的相角裕度和穿越频率进行解析整定;然后在分析了相角裕度和穿越频率对系统性能影响的基础上,设计出模糊控制器,实现了系统根据转速偏差和偏差变化对控制器参数的在线自整定,克服了系统性能对相角裕度和穿越频率选择的依赖。仿真和试验结果表明模糊自整定分数阶内模控制器可使系统具有良好的动态响应、干扰抑制特性以及克服参数摄动的鲁棒性。

关键词: 分数阶控制, 内模控制, 模糊控制, 直流调速系统, 相角裕度, 穿越频率

Abstract: A fuzzy self-tuning fractional internal model controller was proposed for DC speed regulation system. Firstly, the theory of fractional calculus and internal model control(IMC)were combined to design a fractional internal model controller, and the parameters of controller could be tuned according to the phase margin and crossover frequency of the system. Then, based on analysis of the impact of the phase margin and crossover frequency on the system performance, the fuzzy controller was designed. So, the online self-tuning of the controller parameters was realized according to speed error and its change, and the system performance dependence on the phase margin and crossover frequency selection was overcome. The simulation and experimental results showed that the proposed controller could make the system have a better dynamic response characters, disturbance rejection performance and robustness against parameters perturbation of system.

Key words: fractional order control, internal model control, fuzzy control, DC speed regulating system, phase margin, crossover frequency

中图分类号: 

  • TP273
[1] 吴振顺, 姚建均, 岳东海. 模糊自整定PID控制器的设计及其应用[J]. 哈尔滨工业大学学报, 2004, 36(11):1578-1580. WU Zhenshun, YAO Jianjun, YUE Donghai. A self-tuning fuzy PID controller and its application[J]. Journal of Harbin Institute of Technology, 2004, 36(11):1578-1580.
[2] ROMERO S V, HAGGLUND T, ASTROM K J. Design of measurement noise filters for PID control[C] //Proceedings of the 19th International Federation of Automatic Control World Congress. Cape Town, South Africa: IFAC, 2014:8359-8364.
[3] PAPADOPOULOS K G, PAPASTEFANAKI E N, MARGARIS N I. Explicit analytical PID tuning rules for the design of type-III control loops[J]. IEEE Transactions on Industrial Electronics, 2013, 60(10):4650-4664.
[4] MA F. An improved fuzzy PID control algorithm applied in liquid mixing system[C] //Proceedings of IEEE International Conference on Information and Automation. Hailar, China:IEEE, 2014:587-591.
[5] AYALA H V H, DOS S C L. Tuning of PID controller based on a multi objective genetic algorithm applied to a robotic manipulator[J]. Expert Systems with Applications, 2012, 39(10):8968-8974.
[6] PODLUBNY I. Fractional-order systems and PIλDμ controllers[J]. Automatic Control, 1999, 44(1):208-214.
[7] VALERIO D, DA C J S. Tuning of fractional PID controllers with Ziegler—Nichols-type rules[J]. Signal Processing, 2006, 86(10):2771-2784.
[8] PADULA F, VISIOLI A. Optimal tuning rules for proportional-integral-derivative and fractional-order proportional-integral-derivative controllers for integral and unstable processes[J]. Control Theory & Applications, 2012, 6(6):776-786.
[9] DAS S, SAHA S, DAS S, et al. On the selection of tuning methodology of FOPID controllers for the control of higher order processes[J]. ISA Transactions, 2011, 50(3):376-388.
[10] MOHJE C A, VINAGRE B M, CHEN Y Q, et al. Proposals for fractional PIλDμ tuning[C] //Proceedings of The First IFAC Symposium on Fractional Differentiation and its Applications. Lisbon, Portugal: IFAC, 2004:115-120.
[11] LIU L, PAN F, XUE D. Variable-order fuzzy fractional PID controller[J]. ISA Transactions, 2015(55):227-233.
[12] VINOPRABA T, SIVAKUMARAN N, NARAYANAN S, et al. Design of internal model control based fractional order PID controller[J]. Journal of Control Theory and Applications, 2012, 10(3):297-302.
[13] BETTAYEB M, MANSOURI R. Fractional IMC-PID-filter controllers design for non integer order systems[J]. Journal of Process Control, 2014, 24(4):261-271.
[14] 赵志诚, 张博, 刘志远,等. 一种分数阶系统内模PID控制器设计方法[J]. 信息与控制, 2014, 43(2):129-133. ZHAO Zhicheng, ZHANG Bo, LIU Zhiyuan, et al. Design method for IMC-PID controller for fractional order system[J]. Information and Control, 2014, 43(2):129-133.
[15] MAAMAR B, RACHID M. IMC-PID-fractional-order-filter controllers design for integer order systems[J]. ISA Transactions, 2014, 53(5):1620-1628.
[16] SINGHAL R, PADHEE S, KAUR G. Design of fractional order PID controller for speed control of DC motor[J]. International Journal of Scientific and Research Publications, 2012, 2(6):1-8.
[17] PRABOO N N, BHAHA P K. Simulation work on fractional order PI control strategy for speed control of DC motor based on stability boundary locus method[J]. International Journal of Engineering Trends and Technology, 2013, 4(8):3403-3409.
[18] BARBOSA R S, TENREIRO M J A, JESUS I S. Effect of fractional orders in the velocity control of a servo system[J]. Computers & Mathematics with Applications, 2010, 59(5):1679-1686.
[19] MURESAN C I, FOLEA S, MOIS G, et al. Development and implementation of an FPGA based fractional order controller for a DC motor[J]. Mechatronics, 2013, 23(7):798-804.
[20] 屈园园, 张井岗. 基于Quanser的直流调速系统半实物仿真[J]. 太原科技大学学报, 2012, 33(3):172-176. QU Yuanyuan, ZHANG Jinggang. Semi-physical simulation of DC speed regulating system based on Quanser[J]. Journal of Taiyuan University of Science and Technology, 2012, 33(3):172-176.
[21] THOMAS A, JOSE S H, PRASAD A, et al. Speed control of a DC motor using fractional order proportional derivative(FOPD)control[J]. International Journal of Engineering Research and Technology, 2014, 3(1):3460-3464.
[1] 李翔宇,赵志诚,王文逾. 基于反向解耦的PWM整流器分数阶内模控制[J]. 山东大学学报(工学版), 2018, 48(4): 109-115.
[2] 张博涵,陈哲明,付江华,陈宝. 四轮独立驱动电动汽车自适应驱动防滑控制[J]. 山东大学学报(工学版), 2018, 48(1): 96-103.
[3] 张井岗,马文廷,赵志诚. 串级时滞过程的二自由度Smith预估控制[J]. 山东大学学报 (工学版), 2015, 45(5): 43-50.
[4] 王惠芳, 赵志诚, 张井岗. 一种高阶系统的分数阶IMC-IDμ控制器设计[J]. 山东大学学报(工学版), 2014, 44(6): 77-82.
[5] 周风余,田国会,郭丹,周祥章. 助老助残服务机器人机载计算机软件系统设计及实现[J]. 山东大学学报(工学版), 2011, 41(1): 32-39.
[6] 李贻斌1,李彩虹1,2,宋勇1. 基于模糊神经网络的移动机器人自适应行为设计[J]. 山东大学学报(工学版), 2010, 40(2): 28-33.
[7] 唐进君,曹 凯 . 基于分层模糊控制的地图匹配算法[J]. 山东大学学报(工学版), 2008, 38(4): 42-46 .
[8] 鉴萍,李歧强 . 力反馈遥操作机器人系统的内模控制[J]. 山东大学学报(工学版), 2006, 36(5): 49-53 .
[9] 赵建玉,贾磊,朱文兴,杨立才 . 干道交叉口交通信号的模糊控制设计[J]. 山东大学学报(工学版), 2006, 36(1): 46-50 .
[10] 胡玉景,张建华,任升峰,白文峰 . 超声-电火花加工中的放电间隙实时控制[J]. 山东大学学报(工学版), 2006, 36(1): 11-14 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!