山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (2): 17-21.doi: 10.6040/j.issn.1672-3961.2.2014.211
戴红伟1,2, 杨玉2, 仲兆满2, 李存华2
DAI Hongwei1,2, YANG Yu2, ZHONG Zhaoman2, LI Cunhua2
摘要: 根据不同交叉算子的互补特性,提出了改进量子交叉免疫克隆算法(improved quantum crossover immune cloanl algorithm, IQCICA)。交叉算子由具有深度挖掘和广度挖掘特征的两种算子组成,并通过适当的参数控制两种算子的选择。将该算法应用于著名的组合优化问题—旅行商问题(traveling salesman problems, TSP),并将计算结果与其它算法进行了对比分析。仿真结果表明,混合量子交叉免疫克隆选择算法能有效平衡全局和局部搜索能力,有着较好的收敛速度和稳定性。
中图分类号:
[1] 朱云龙,陈瀚宁,申海. 生物启发计算:个体、群体、群落演化模型与方法[M]. 北京:清华大学出版社, 2013. [2] LEE Z Y, PONNAMBALAM S G. Optimisation of multipass turning operations using PSO and GAAIS algorithms[J]. International Journal of Production Research, 2012, 50(22):6499-6518. [3] SATO Y, CAMPELO F, IGARASHI H. Meander line antenna design using an adaptive genetic algorithm[J]. IEEE Transactions on Magnetics, 2013, 49(5):1889-1892. [4] IACCA G. Distributed optimization in wireless sensor networks: an island-model framework[J]. Soft Comput, 2013(17):2257-2277. [5] FESANGHARY M, ASADI S, GEEM Z. Design of low-emission and energy-efficient residential buildings using a multi-objective optimization algorithm[J]. Building and Environment, 2012(49):245-250. [6] 高元海, 王淳. 无重访遗传算法及其在输电网络规划中的应用[J]. 中国电机工程学报, 2013, 33(4):110-117. GAO Yuanhai, WANG Chun. Non-revisiting genetic algorithm and its application in transmission network planning[J]. Proceedings of the CSEE, 2013, 33(4):110-117. [7] 巩敦卫, 曾现峰, 张勇. 基于改进模拟退火算法的机器人全局路径规划[J]. 系统仿真学报, 2013, 25(3):480-483. GONG Dunwei, ZENG Xianfeng, ZHANG Yong. Global path planning method of robot based on modified simulated annealing algorithm[J]. Journal of System Simulation, 2013, 25(3):480-483. [8] 温涛, 盛国军, 郭权, 等. 基于改进粒子群算法的Web服务组合[J]. 计算机学报, 2013, 36(5):1031-1046. WEN Tao, SHENG Guojun, GUO Quan, et al. Web service composition based on modified particle swarm optimization[J]. Chinese Journal of Computers, 2013, 36(5):1031-1046. [9] 宋代立, 张洁. 蚁群算法求解混合流水车间分批调度问题[J]. 计算机集成制造系统, 2013, 19(7):1640-1647. SONG Daili, ZHANG Jie. Batch scheduling problem of hybrid flow shop based on ant colony algorithm[J]. Computer Integrated Manufacturing Systems, 2013, 19(7):1640-1647. [10] 焦李成, 杜海峰, 刘芳, 等. 免疫优化—计算、学习与识别[M]. 北京:科学出版社, 2006. [11] 郭凯, 李海芳, 王会青. 一种人工免疫的自适应谱聚类算[J]. 小微型计算机系统, 2013, 34(4):856-859. GUO Kai, LI Haifang, WANG Huiqing. An adaptive spectral clustering algorithm based on artificial immune[J]. Journal of Chinese Computer Systems, 2013, 34(4):856-859. [12] DAI H W, YANG Y, LI C H, et al. Quantum interference crossover-based clonal selection algorithm and its application to traveling salesman problem[J]. IEICE Trans on Info & Sys, 2009, 92(1):78-85. [13] ALI R Y. An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry[J]. Journal of Materials Processing Technology, 2009(209):2773-2780. [14] NARAYANAN A, MOORE M. Quantum-inspired genetic algorithm[C]//Proceedings of IEEE Int Conf Evolutionary Computation(1996). Nagoya, Japan: IEEE: 61-66. [15] 李阳阳, 焦李成. 量子克隆多播路由算法[J]. 软件学报, 2007, 18(9):2063-2069. LI Yangyang, JIAO Licheng. Quantum clonal algorithm for multicast routing problem[J]. Journal of Software, 2007, 18(9):2063-2069. [16] 戴红伟, 杨玉, 王永泉, 等. 自适应量子交叉克隆选择算法及其应用[J]. 西安交通大学学报, 2014, 48(9):6-12. DAI Hongwei, YANG Yu, WANG Yongquan, et al. Adaptive quantum crossover based clonal selection algorithm and its applications[J]. Journal of Xi'an Jiaotong University, 2014, 48(9):6-12. [17] LIU R C, ZHANG X R, YANG N, et al. Immunodomaince based clonal selection clustering algorithm[J]. Applied Soft Computing, 2012(12):302-312. [18] GAO S C, DAI H W, YANG G, et al. A novel clonal selection algorithm and its application to traveling salesman problems[J]. IEICE Trans Fundam, 2007(10):2318-2325. [19] 徐京雷, 赵洪超, 刘希玉. 旅行商问题的闭环DNA算法[J]. 计算机工程与科学, 2014, 36(1):111-114. XU Jinglei, ZHAO Hongchao, LIU Xiyu. Closed circle DNA algorithm of traveling salesman problem[J]. Computer Engineering & Science, 2014, 36(1):111-114. [20] CHANG P C, HUANG W H, TING C J. Dynamic diversity control in genetic algorithm for mining unsearched solution space in TSP problems[J]. Expert Systems with Applications, 2010(37):1863-1878. |
[1] | 易云飞,苗剑,林郭隆,殷智. 基于牛顿力学和博弈论模型的粒子网络优化算法[J]. 山东大学学报(工学版), 2017, 47(1): 28-36. |
[2] | 王立宏,李强. 旅行商问题的一种选择性集成求解方法[J]. 山东大学学报(工学版), 2016, 46(1): 42-48. |
[3] | 曾华1,崔文2,付连宁1,吴耀华1*. Lin-Kernighan算法初始解的启发式构造策略[J]. 山东大学学报(工学版), 2012, 42(2): 30-35. |
[4] | 蔡荣英,王李进,吴超,钟一文*. 一种求解旅行商问题的迭代改进蚁群优化算法[J]. 山东大学学报(工学版), 2012, 42(1): 6-11. |
|