山东大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 77-82.doi: 10.6040/j.issn.1672-3961.0.2014.172
王惠芳, 赵志诚, 张井岗
WANG Huifang, ZHAO Zhicheng, ZHANG Jinggang
摘要: 针对高阶系统提出了一种模型降阶以及分数阶内模IDμ控制器设计方法。首先基于积分平方误差(ISE)性能指标,利用微粒群优化(Particle Swarm Optimization, PSO)算法将高阶系统模型降阶为含有时滞环节的分数阶模型;然后根据内模控制(Internal Model Control, IMC)原理,并用一阶泰勒表达式逼近模型中的时滞环节,推导出了分数阶IMC-IDμ控制器,该控制器仅包含一个可调参数;最后根据系统的最大灵敏度指标,实现了控制器参数的鲁棒整定。仿真结果表明,本文方法可使系统同时具有较好的动态响应、干扰抑制性能以及克服参数摄动的鲁棒性。
中图分类号:
[1] ASTROM K J, HAGGLUND T. PID controller:theory, design and tuning[M].[s.n.]:Instrument Society of America, 1995. [2] ISAKSSON A J, GRAEBE S F. Analytical PID parameter expressions for higher order systems[J]. Automatica, 1999, 35(6):1121-1130. [3] DAS S, SAHA S, DAS S, et al. On the selection of tuning methodology of FOPID controllers for the control of higher order processes[J]. ISA transactions, 2011, 50(3):376-388. [4] KHADRAOUI S, NOUNOU H, NOUNOU M, et al. A model-free design of reduced-order controllers and application to a DC servomotor[J]. Automatica, 2014, 50(8):2297-2301. [5] KUMAR E G, MITHUNCHAKRAVARTHI B, DHIVYA N. Enhancement of PID controller performance for a quadruple tank process with minimum and non-minimum phase behaviors[J]. Procedia Technology, 2014, 14(4):480-489. [6] DWYER AO'. Handbook of PI and PID controller tuning rules[M]. London, UK:Imperial College Press, 2006. [7] HEERDIA M C, PRIETO J S, BRIONGOS J V. Feedback PID-like fuzzy controller for pH regulatory control near the equivalence point[J]. Journal of Process Control, 2014, 24(7):1023-1037. [8] BARDINI M E, NAGER A M. Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system[J]. ISA Transactions, 2014, 53(3), 732-743. [9] CHEN Y Q, XUE D Y, BHASKARAN T. Practical tuning rule development for fractional order proportional and integral controller[J]. Journal of Computational and Nonlinear Dynamics, 2008, 3(2):21403-21408. [10] TAVAKOLI K M, HAERI M. Fractional order model reduction approach based on retention of the dominant dynamics:Application in IMC based tuning of FOPI and FOPID controllers[J]. ISA transactions, 2011, 50(3):432-442. [11] JIN C Y, RYU K H, SUNG S W, et al. PID auto-tuning using new model reduction method and explicit PID tuning rule for a fractional order plus time delay model[J]. Journal of Process Control, 2014, 24(1):113-128. [12] MALWATKAR G M, SONAWANE S H, WAGHMARE L M. Tuning PID controllers for higher-order oscillatory systems with improved performance[J]. ISA Transactions, 2009, 48(3):347-353. [13] PODLUBNY I. Fractional-order systems and PIλDμ controllers[J]. IEEE Trans on Automatic Control, 1999, 44(1):208-214. [14] MONJE C A, RAMOS F, FELIU V, VINAGRE B M. Tip position control of a lightweight flexible manipulator using a fractional-order controller[J]. Control Theory and Applications, 2007, 1(5):1451-1460. [15] MONJE C A, VINAGRE B M, FELIU V, et al. Tuning and auto tuning of fractional order controllers for industry applications[J]. Control Engineering Practice, 2008, 16(7):798-812. [16] Tavazoei M S, Haeri M. Rational approximations in simulation and implementation of fractional order dynamics:a descriptor system approach[J]. Automatica, 2010, 46(1):94-100. [17] BADRI V, TAVAZOEI M S. On tuning fractional order[proportional-derivative] controllers for a class of fractional order systems[J]. Automatica, 2013, 49(7):2297-2301. [18] MESBAHI A, HAERI M. Robust non-fragile fractional order PID controller for linear time invariant fractional delay systems[J]. Journal of Process Control, 2014, 24(9):1489-1494. [19] ABADI M, RAHMANI M R, JALALI A. A fractional order PID controller tuning based on IMC[J]. International Journal of Information Technology, Control and Automation (IJITCA), 2012, 2(4):21-35. [20] 李大字, 刘展, 曹娇. 基于IMC方法的分数阶系统控制器设计[J]. 仪器仪表学报, 2007, 28(8):362-365. LI D Z, LIN Z, CAO J. Design a controller for fractional system based on IMC[J]. Journal of instruments and meters, 2007, 28(8):362-365. [21] LI D Z, FAN W G, JIN Q B. An IMC-PIλDμ controller design for fractional calculus system[C]//Proceedings of 29th Chinese Control Conference. Beijing, China: IEEE, 2010:3581-3585. [22] VINOPRABA T, SIVAKUMARAN N, NARAYANAN S, et al. Design of internal model control based fractional order PID controller[J]. Journal of Control Theory and Applications, 2012, 10(3):297-302. [23] BETTAYEB M, MANSOURI R. Fractional IMC-PID-filter controllers design for non-integer order systems[J]. Journal of Process Control, 2014, 24(4):261-271. [24] ALI A, MAJHI S. PI/PID controller design based on IMC and percentage overshoot specification to controller set-point change[J]. ISA transactions, 2009, 48(1):10-15. [25] OUSTALOUP A, SABATIER J, LANUSSE P. From fractal robustness to CRONE control[J]. Fractional Calculus & Applied Analysis, 1999, 2(1):1-30. |
[1] | 李翔宇,赵志诚,王文逾. 基于反向解耦的PWM整流器分数阶内模控制[J]. 山东大学学报(工学版), 2018, 48(4): 109-115. |
[2] | 张井岗, 马文廷, 赵志诚. 串级时滞过程的二自由度Smith预估控制[J]. 山东大学学报(工学版), 2015, 45(5): 43-50. |
[3] | 赵志涛, 赵志诚, 王惠芳. 直流调速系统模糊自整定分数阶内模控制[J]. 山东大学学报(工学版), 2015, 45(5): 58-62. |
[4] | 鉴萍,李歧强 . 力反馈遥操作机器人系统的内模控制[J]. 山东大学学报(工学版), 2006, 36(5): 49-53 . |
|