周咏梅1,阳爱民1,林江豪2
ZHOU Yongmei1, YANG Aimin1, LIN Jianghao2
摘要: 提出了一种中文微博情感词典构建方法。采用上下文熵的网络用语发现策略,通过TFIDF(term frequencyinverse document frequency)进行二次过滤得到网络用语;利用SOPMI(semantic orientationpointwise mutual information)算法在已标注的微博语料库中计算网络用语的情感倾向值,构建网络用语情感词典;将词典应用到微博情感分类实验,并与朴素贝叶斯分类器的分类性能进行了比较分析。实验结果表明,直接利用微博情感词典的分类效果好于朴素贝叶斯分类器,并具有分类过程简单、快速等优势。
[1] | 沈冀,马志强,李图雅,张力. 面向短文本情感分析的词扩充LDA模型[J]. 山东大学学报(工学版), 2018, 48(3): 120-126. |
[2] | 周哲, 商琳. 一种基于动态词典和三支决策的情感分析方法[J]. 山东大学学报(工学版), 2015, 45(1): 19-23. |
[3] | 于江德1,赵红丹1,郑勃举1,余正涛2. 基于中文人名用字特征的性别判定方法[J]. 山东大学学报(工学版), 2014, 44(1): 13-18. |
[4] | 周咏梅1,杨佳能2,阳爱民2. 面向文本情感分析的中文情感词典构建方法[J]. 山东大学学报(工学版), 2013, 43(6): 27-33. |
|