您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版)

• 机器学习与数据挖掘 • 上一篇    下一篇

基于新Haar-like特征的Adaboost人脸检测算法

江伟坚1,2,郭躬德1,2*,赖智铭1,2   

  1. 1.福建师范大学数学与计算机科学学院, 福建 福州 350007;
    2.福建师范大学网络安全与密码技术福建省重点实验室,福建 福州 350007
  • 收稿日期:2013-05-14 出版日期:2014-04-20 发布日期:2013-05-14
  • 通讯作者: 郭躬德(1965- ),男,福建龙岩人,博士,教授,主要研究方向为人工智能,机器学习和数据挖掘技术及其应用.
  • 作者简介:江伟坚(1988- ),男,福建泉州人,硕士研究生,主要研究方向为视觉跟踪,模式识别和机器学习.E-mail:kongwaigin@gmail.com
  • 基金资助:
    国家自然科学基金资助项目(61070062,61175123);福建高校产学合作科技重大项目(2010H6007)

An improved adaboost algorithm based on new Haar-like feature for face detection

JIANG Weijian1,2, GUO Gongde1,2*, LAI Zhiming1,2   

  1. 1. School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, Fujian, China;
    2. The Key Laboratory of Network Security and Cryptographic Technology of Fujian Province,
     Fujian Normal University, Fuzhou 350007, Fujian, China
  • Received:2013-05-14 Online:2014-04-20 Published:2013-05-14

摘要: 为解决基于Haar-like特征的Adaboost人脸检测方法存在的特征计算复杂度较高的问题,提出两组Haar-like特征扩展集;利用积分图给出特征组的计算方法;采用Adaboost算法在正脸和侧脸样本库分别训练出正脸和侧脸级联分类器,并将其组成双通道分类器。在开源视觉库OpenCV上的实验结果表明,本方法具有较少的弱分类器数,检测效率高、计算速度快,对于多角度人脸检测具有较好的鲁棒性。

关键词: Haar-like 特征, Adaboost算法, 积分图, OpenCV, 级联分类器, 人脸检测

Abstract: To solve problem of highly complexity of multi-angle face detection by the Adaboost algorithm based on the Haar-like, two new groups of extended Haar-like feature were proposed and the calculation method were exploited by the integral image. Then, the frontal faces cascaded classifier and the profile faces cascaded classifier was trained on the face database by the Adaboost algorithm respectively. Finally, the two-channel cascaded classifier was built. On OpenCV which is an open source vision database, the experimental results showed that the proposed method had better performance both in accuracy and computing speed, and could detect face with less weak classifiers. Meanwhile, the cascaded classifier had a good ability of robustness on detecting multi-angle face.

Key words: Adaboost algorithm, Haar-like feature, cascaded classifier, face detection, integral image, OpenCV

中图分类号: 

  • TP301
[1] 李翔1,朱全银1,王尊2. 基于可变基函数和GentleAdaBoost的小波神经网络研究[J]. 山东大学学报(工学版), 2013, 43(5): 31-38.
[2] 朱洪锦1,范洪辉1,陈兴瑞1,田村安孝2. 基于局部自我相关函数光线照明变化下的人脸检测[J]. 山东大学学报(工学版), 2012, 42(5): 59-64.
[3] 孙晓燕1,2,张化祥1,2*,计华1,2. 基于AdaBoost的欠抽样集成学习算法[J]. 山东大学学报(工学版), 2011, 41(4): 91-94.
[4] 孙亚新, 战荫伟*. 基于肤色模型与人脸特征的多姿态人脸检测[J]. 山东大学学报(工学版), 2011, 41(2): 36-39.
[5] 陈金坦1,2,康恒政3*,杨燕3,周伟雄4. 一种用于不平衡数据的分类算法[J]. 山东大学学报(工学版), 2011, 41(2): 96-101.
[6] 马志强,常发亮,田伟,赵瑶 . 彩色图像中的人脸检测方法[J]. 山东大学学报(工学版), 2007, 37(4): 19-22 .
[7] 牛新生,叶华,王亮 . 彩色图像中的人脸检测方法[J]. 山东大学学报(工学版), 2007, 37(4): 0-0 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!