您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (3): 1-6.

• 机器学习与数据挖掘 •    下一篇

适应用户需求变化的前摄推荐模型

许春耀1,2, 陈明志3*, 余轮1   

  1. 1. 福州大学物理与信息工程学院,  福建 福州 350108;
    2. 武警福州指挥学院教研部, 福建 福州 350002;3. 福州大学数学与计算机科学学院,福建 福州 350108
  • 收稿日期:2012-08-24 出版日期:2013-06-20 发布日期:2012-08-24
  • 通讯作者: 陈明志(1975- ),男,福建古田人,博士,副教授,主要研究方向为智能信息处理,虚拟环境. E-mail:donres@126.com
  • 作者简介:许春耀(1971- ),男,福建石狮人,博士,教授,主要研究方向为数字媒体技术研究.E-mail:xujerry88@163.com
  • 基金资助:

    福建省自然科学基金资助项目(2011J0136)

A proactive recommendation model  adapted to users′ changing requirements

XU Chun-yao1,2, CHEN Mingzhi3*, YU Lun1   

  1. 1. College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China;
    2. Teaching and Research Department, Fuzhou Command College of Chinese People′s Armed Police Force,
     Fuzhou  350002, China;3. College of Math and Computer Science, Fuzhou University, Fuzhou 350108, China
  • Received:2012-08-24 Online:2013-06-20 Published:2012-08-24

摘要:

为了减少前摄推荐对用户当前活动可能产生的干扰,提出一种适应用户接受度变化的前摄推荐模型,感知用户对系统主动的信息推送是否有潜在需求以及需求的波动性,以提高用户体验。使用接受度向量来评估用户对信息推送的需求,应用决策树算法对用户历史上下文进行规则推理,形成用户对上下文推荐的接受度向量,并根据上下文变化和用户反馈来调整推荐接受度向量。试验结果表明,模型能够响应用户对推荐的动态变化,有助于改善用户体验。

关键词: 上下文感知, 规则生成, 接受度, 前摄推荐, 决策树

Abstract:

 In order to reduce the potential interference with users′ current activities through proactive recommendation and improve the users′ experience, a proactive recommendation model of adapting to users′ changing requirements was proposed. This model concerned with the users′ potential demands for proactive information given by the system, and especially the volatility of those demands. This model adopted an acceptance vector to evaluate the user′s demand for proactive information,  and the decision tree algorithm was  applied to conduct rule-based reasoning by means of the user′s historical context, and then the users′ acceptance vectors for context recommendation was given. The recommendation acceptance vectors could be adjusted according to the changing  context and user′s feedback. The experimental results showed that the proposed  model could adaptively respond to the users′ changing requirements, which was helpful to improve the user experience.

Key words: rule generation, decision trees, acceptance degree, proactive recommendation, contextaware

中图分类号: 

  • TP391
[1] 熊冰妍, 王国胤, 邓维斌. 分级式代价敏感决策树及其在手机换机预测中的应用[J]. 山东大学学报(工学版), 2015, 45(5): 36-42.
[2] 潘盼1,王熙照2,翟俊海2. 基于有序决策树的改进归纳算法[J]. 山东大学学报(工学版), 2014, 44(1): 41-44.
[3] 张小峰,张志旺,逄珊. 基于通信系统的决策树构造算法[J]. 山东大学学报(工学版), 2011, 41(4): 79-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!