您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2011, Vol. 41 ›› Issue (6): 43-49.

• 机器学习与数据挖掘 • 上一篇    下一篇

一种新的基于网络虚拟环境的用户访问模式聚类算法

陈明志1,2, 陈健3, 许春耀3, 余轮3, 林柏钢1,2   

  1. 福州大学 1.数学与计算机科学学院; 2. 网络系统信息安全福建省高校重点实验室;
     3. 物理与信息工程学院, 福建 福州 350108
  • 收稿日期:2011-07-11 出版日期:2011-12-16 发布日期:2011-07-11
  • 作者简介:陈明志(1975- ),男,福建古田人,讲师,博士,主要研究方向为智能信息处理,虚拟环境等.E-mail:donres@fzu.edu.cn
  • 基金资助:

    福建省自然科学基金项目(2011J01346);福州大学科研基金资助项目(XRC-1039)

A new clustering algorithm for user access patterns based on network virtual environments

CHEN Ming-zhi1, 2,  CHEN Jian3,  XU Chun-yao3,  YU Lun3,  LIN Bo-gang1, 2   

  1. 1. College of Math and Computer Science,
    2. Key Lab of Information Security of Network Systems (Fujian Province University),
    3. College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
  • Received:2011-07-11 Online:2011-12-16 Published:2011-07-11

摘要:

为了有效地实现网络虚拟环境的个性化信息推荐,提出一种针对网络三维虚拟环境的用户访问模式聚类算法,即基于多目标粒子群优化的模糊C-均值聚类算法(MOPSO-based FCM, MPF)。MPF算法结合了粒子群优化算法(particle swarm optimization, PSO)与模糊C均值算法(fuzzy C-means, FCM)的优点,通过PSO的全局空间搜索避免了FCM算法对初始值、噪声数据敏感与容易陷入局部最优等。为了改善聚类效果,在PSO中设计一个基于双目标(最小化类内距离与最大化类间距离)的粒子适应度函数。最后用标准数据集与模拟数据集分别对MPF算法进行性能测试,实验结果表明:本算法在聚类精度方面表现良好。

关键词: 网络虚拟环境, 用户访问模式聚类, 多目标粒子群优化, 模糊C均值

Abstract:

In order to efficiently implement  personalized information services in network virtual environments, a new clustering algorithm for user access patterns was proposed, which was  the MPF, i.e. the fuzzy C-means (FCM) clustering algorithm based on multi-objects particle swarm optimization (MOPSO). The MPF could combine the respective advantages of PSO and FCM. Through the global spatial search of PSO, it could avoid that  FCM was susceptible to initial value, noisy data and easily falling into the local optimum. In order to improve the clustering effect,  a particle fitness function was designed based on dualobjectives (intra-class distance and inter-class distance) in PSO. Finally, the standard data set and simulation data set were applied to verify the effectiveness of this MPF. Experimental results showed that this algorithm had  good performance in clustering precision.

Key words: network virtual environments, user access patterns, multi-objects particle swarm optimization, fuzzy C-means

中图分类号: 

  • TP301.6
[1] 李贻斌,李彩虹,阮久宏 . ITS智能车辆横向运动模式空间构造算法研究[J]. 山东大学学报(工学版), 2006, 36(2): 36-40 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!