山东大学学报(工学版) ›› 2011, Vol. 41 ›› Issue (4): 119-124.
朱跃龙,李士进,范青松,万定生
ZHU Yue-long, LI Shi-jin, FAN Qing-song, WAN Ding-sheng
摘要:
复杂时间序列预测是时间序列分析的主要研究内容之一,已成为一个具有重要理论和实际应用价值的热点研究领域。基于小波和神经网络组合模型,提出一种多因子小波预测模型以提高水文时间序列的预测精度。并根据不同小波函数对水文时间序列数据的适应性,提出了一种基于加权相关系数的小波函数选择准则。以国家重要水文站淮河王家坝站汛期的日流量时间序列预测为例,对各种常用小波函数进行了实验。结果发现选择得到的Haar小波和B3 spline小波函数预测精度较高,从而验证了小波函数选取准则的有效性;通过和传统单序列小波神经网络模型比较,发现提出的多因子小波神经网络模型的预测合格率在不同预见期均提高了10%以上,并且对洪水高流量方向预测合格率提高了15%。
[1] | 吴建萍,姜斌,刘剑慰. 基于小波包信息熵和小波神经网络的异步电机故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 223-228. |
[2] | 李翔1,朱全银1,王尊2. 基于可变基函数和GentleAdaBoost的小波神经网络研究[J]. 山东大学学报(工学版), 2013, 43(5): 31-38. |
[3] | 李婧瑜,李歧强,侯海燕,杨立才 . 基于遗传算法的小波神经网络交通流预测[J]. 山东大学学报(工学版), 2007, 37(2): 109-112 . |
|