您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2010, Vol. 40 ›› Issue (6): 156-158.

• 其它 • 上一篇    

一种求所有最长增量子序列的算法

杨海斌,赵学锋,王秀花,张利香   

  1. 西北师范大学数学与信息科学学院, 甘肃 兰州 730070
  • 收稿日期:2009-10-20 出版日期:2010-12-16 发布日期:2009-10-20
  • 作者简介:杨海斌(1985-),男,甘肃渭源人,硕士研究生,主要研究方向为算法设计与分析.E-mail: yanghaibin2008@126.com

An algorithm for computing  the all longest increasing subsequence

YANG Hai-bin, ZHAO Xue-feng, WANG Xiu-hua, ZHANG Li-xiang   

  1. College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China
  • Received:2009-10-20 Online:2010-12-16 Published:2009-10-20

摘要:

对计算最长增量子序列(longest increasing subsequence, LIS)的CM (Cover-Making) 算法进行详细地分析,提出一个基于CM算法的新算法,可以求出一个序列的所有最长增量子序列。 它的时间复杂度是O((m+1)k+(n-k)log k), 空间复杂度是O(n+km)。

关键词: 子序列, CM 算法, 最长增量子序列, 所有最长增量子序列

Abstract:

The  Cover-Making(CM) algorithm of the longest increasing subsequence was analyzed, and  a new algorithm that can compute a sequence’s all longest increasing subsequences was presented, based on the CM algorithm. The complexity of the time isO((m+1)k+(n-k)log k), and the complexity of the space is O(n+km).

Key words: subsequence, CM algorithm, longest increasing subsequence, all longest increasing subsequence

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!