您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2010, Vol. 40 ›› Issue (2): 34-42.

• 控制科学与工程 • 上一篇    下一篇

约束环境下的多移动机器人自适应伸展算法

谈金东,陈曦   

  1. 密歇根理工大学电子与计算机工程系, 美国 密歇根州霍顿市 49931
  • 收稿日期:2009-07-21 出版日期:2010-04-16 发布日期:2009-07-21

An  adaptive mobile robot  tethering  algorithm  in  constrained  environments

TAN Jin-dong, CHEN Xi   

  1. Department of Electrical and Computer Engineering,Michigan Technological University,Houghton, MI 49931, USA
  • Received:2009-07-21 Online:2010-04-16 Published:2009-07-21
  • About author:TAN Jin-dong(1970-),male,associate professor,doctor,his research interests include multirobot systems, sensor network,biosensor and signal process, humanmachine interaction,et al. E-mail: jitan@mtu.edu CHEN Xi(1985-),male,doctor PS,his research interests include mobile wireless sensor networks, multirobot systems,et al.E-mail: xchen3@mtu.edu
  • Supported by:

    National Science Foundation under Grant ECS #0528967 and CSR #0720781 of America

摘要:

本文介绍了一种用来控制移动机器人组成链式网络并修复通讯连接的自适应分布式机器人合作算法。开发了单层链式伸展算法和双层链式伸展算法,使得移动机器人可以对开放式环境和受约束环境进行探索。还介绍了一种用于寻找最优通讯距离的综合化的方法。通过使用其测量结果,移动机器人系统可以组织成为优化的链式结构并进行伸展。这种伸展算法可以检测到网络中某个机器人节点的缺失,并重新配置系统。它为通讯连接的中断问题提供了一种自适应的解决方案。

关键词: 移动传感器网络, 双层链式伸展, 自适应算法

Abstract:

This paper presents an adaptive and decentralized robotic cooperation algorithm for controlling  mobile sensors to form a chained network and maintaining  communication links.  Single-layer and double-layer chain tethering algorithms are developed for exploring  open and constrained environments by mobile robots. A comprehensive metric for finding the optimal communication range is introduced. With the measurements, mobile robots could be organized into an optimal chained form for tethering. The tethering algorithm could detect the failed nodes and reconfigure the system. It offers an adaptive solution to broken communication links.
 

Key words: mobile sensor network, double-layer chain tethering, adaptive algorithm

[1] 刘琼 吴小俊. 一种改进的免疫克隆选择算法[J]. 山东大学学报(工学版), 2009, 39(6): 8-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!