山东大学学报(工学版) ›› 2010, Vol. 40 ›› Issue (2): 1-10.
• 机器学习与数据挖掘 • 下一篇
张道强
ZHANG Dao-qiang
摘要:
考虑了一种带有数据领域知识的降维问题。这里领域知识是指关于数据的一些额外监督信息,如类别标号以及比标号弱的样本间相似性和不相似性约束等。其中,约束可以从标号中产生,但反过来从约束中却得不到标号信息,因而约束比标号更一般。另外,在图像检索等实际应用中,约束比标号更容易获取。鉴于此,本文主要研究基于约束的降维问题。提出了一种有效利用约束进行降维的约束保持嵌入算法(constraint preserving embedding, COPE),将其纳入到图嵌入统一框架之中并指出与同类方法的关系。进一步,通过引入无标记样本提出了半监督COPE算法;提出核COPE以揭示数据中的非线性结构。最后,在人脸识别、图像检索及半监督聚类等一系列实验中的结果验证了算法的有效性。
[1] | 丁彦,李永忠*. 基于PCA和半监督聚类的入侵检测算法研究[J]. 山东大学学报(工学版), 2012, 42(5): 41-46. |
[2] | 张友新,王立宏. 两阶段近邻传播半监督聚类算法[J]. 山东大学学报(工学版), 2012, 42(2): 18-22. |
|