严格双α对角占优矩阵;迭代法;收敛性定理," /> 严格双α对角占优矩阵;迭代法;收敛性定理,"/> doubly αdiagonal strictly dominance matrix; iteration method; convergence theorem,"/> <font face="Verdana">某些迭代法的一个收敛性定理</font>
您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2009, Vol. 39 ›› Issue (2): 146-146.doi:

• 其它 • 上一篇    

某些迭代法的一个收敛性定理

宋岱才, 姜凤利, 田秋菊   

  1. 辽宁石油化工大学理学院, 辽宁 抚顺 113001
  • 收稿日期:2008-04-01 修回日期:1900-01-01 出版日期:2009-04-16 发布日期:2009-04-16
  • 通讯作者: 宋岱才

  1. School of Sciences, Liaoning University of Petroleum & Chemical Technology, Fushun 113001, China
  • Received:2008-04-01 Revised:1900-01-01 Online:2009-04-16 Published:2009-04-16

摘要:

为求解线性方程组Ax=b,将矩阵A分解为A=M-N,这里M为非奇异矩阵.得到的迭代格式x(k+1)=M-1Nx(k)+M-1b(k=0,1,2,…)对任意初始向量x(0)都收敛到解x=A-1b,当且仅当M-1N的谱半径ρ(M-1N)<1,其中M-1N称为迭代矩阵.针对线性方程组的系数矩阵为严格双α对角占优矩阵的情况,讨论了线性方程组求解时几种常用迭代方法的收敛性,给出了迭代法的一个收敛性定理,由此得到了几个重要的推论.最后举例说明了所给结果的优越性.

关键词: 严格双α对角占优矩阵;迭代法;收敛性定理')">严格双α对角占优矩阵;迭代法;收敛性定理

Abstract:

For solving a system of linear equations of the form Ax=b, Ais often split into A=M-N, Where M is nonsingular. It is known that x(k+1)=M-1Nx(k)+M-1b(k=0,1,2,…) converges to the solution x=A-1b for each x(0), if and only if spectral radius ρ(M-1N)<1. The matrix M-1N is called an iterative matrix. It is easy to see that the estimations for the bounds of ρ(M-1N) are of interest.Some iteration methods for solving linear systems were studied, when coefficient matrix was doubly αdiagonal strictly dominance, and a convergence theorem and some corollaries were given. Results obtained were applicable for doubly αdiagonal strictly dominance matrix, and for generalized diagonal strictly dominance matrix. Finally, two numerical examples were given to show the advantage of this results.

Key words: doubly αdiagonal strictly dominance matrix; iteration method; convergence theorem')">doubly αdiagonal strictly dominance matrix; iteration method; convergence theorem

中图分类号: 

  • O2416
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!