您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2009, Vol. 39 ›› Issue (1): 15-21.doi:

• 机器学习与数据挖掘 • 上一篇    下一篇

对象级搜索中基于图的对象排序模型(英文)

李梁,罗奇鸣,陈恩红   

  1. 中国科学技术大学计算机系, 安徽 合肥 230027
  • 收稿日期:2009-01-10 修回日期:1900-01-01 出版日期:2009-02-16 发布日期:2009-02-16
  • 通讯作者: 陈恩红

Graph-based ranking model for object-level search

LI Liang, LUO Qiming, CHEN Enhong   

  1. Department of Computer Science, University of Science and Technology of China, Hefei 230027, China
  • Received:2009-01-10 Revised:1900-01-01 Online:2009-02-16 Published:2009-02-16
  • Contact: CHEN En hong

摘要:

摘要:提出了一种对象级搜索中领域无关的对象排序模型.给定对象集合以及对象间的关系,根据用户输入的对象查询,该模型按照对象与查询的相关度输出一个对象的排序表.采用一个多平面的图表示对象级搜索的空间,并基于该图分别提出了对象流行度评估算法、根据查询计算相关度的算法,以及合并多个对象查询的算法.针对ACM数据集上的实验结果表明该算法是有效的,在论文推荐与合并多对象查询方面,均取得了比PaperRank更好的结果.

关键词: 关键词:Web对象;对象级搜索;链接分析

Abstract:

Abstract: This paper proposes a novel domainindependent objectlevel ranking model. Given a set of objects and their

relationships, this model provides a ranked list of objects based on their relevance to multiple query objects supplied by the

user. We present a multi-plane object relationship graph to describe the space of objectlevel search, an algorithm for

evaluating the popularity values of objects based on the object relationship graph, and an algorithm for evaluating the

relevance ratings of objects based on the query object as well as merging multiple query objects. The effectiveness of this

model is experimentally verified on the ACM data set. This model provides a better paper recommendation performance than

PaperRank. This model also outperforms PaperRank on merging the relevance ratings of multiple query objects into a single

vector.

Key words: Key words: Web objects; object-level search; link analysis

中图分类号: 

  • TP311
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!