• 机器学习与数据挖掘 • 下一篇
刘力军1,马玉梅1,孟佳娜2
LIU Lijun1, MA Yumei1, MENG Jiana2
摘要: 神经网络在线提取子分量并不成功。基于Oja-Brockett-Xu并行神经网络拓扑结构,通过紧致Stiefel流形上加权Rayleigh商目标函数的优化框架,提出一个通过改变搜索方向并行提取主分量和子分量的自适应对偶学习算法。在正交矩阵群上采用基于右平移不变的Killing度量,通过在单位元处基于指数映射的测地线搜索,得到Stiefel流形上主(子)分量分析的对偶学习算法,提出的算法通过简单的变换步长参数符号,从主分量分析切换至子分量分析,权值矩阵在任意迭代时刻保持正交归一性。数值仿真验证了该算法的有效性。
中图分类号:
[1] | 赵洪国,张焕水,张承慧 . 基于主独立内容特征的人脸图像检索方法研究[J]. 山东大学学报(工学版), 2007, 37(4): 0-0 . |
[2] | 孙国霞,孙兴华,白树忠,刘琚,孙建德 . 基于主独立内容特征的人脸图像检索方法[J]. 山东大学学报(工学版), 2007, 37(4): 81-84 . |
|