山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (1): 41-50.doi: 10.6040/j.issn.1672-3961.0.2024.191
• 机器学习与数据挖掘 • 上一篇
王英楠1,郑文萍2,3*,杨贵2
WANG Yingnan1, ZHENG Wenping2,3*, YANG Gui2
摘要: 针对现有网络嵌入方法忽略高阶结构,嵌入过程与社区发现任务独立进行,影响社区发现质量的问题,提出基于双视角网络嵌入聚类集成社区发现算法(community detection algorithm based on dual-view network embedded clustering integration, DNECI),算法包括双视角网络嵌入和聚类集成两部分。双视角网络嵌入模块对网络属性信息与拓扑信息实现自适应融合,保留网络属性信息与拓扑的高阶结构。聚类集成模块包括模块度优化和聚类优化两个组件,模块度优化组件利用高阶拓扑结构得到具有最优模块度的社区结果;聚类优化组件通过自监督聚类方法在嵌入空间得到聚类结果;引入互监督机制使两种视角的社区发现结果具有一致性。在4个真实数据集与15个算法进行对比试验,结果表明,DNECI在准确率和标准互信息至少比最先进的基准算法平均提高2.5%和1.4%,在调整兰德系数和F1分数至少平均提高3.7%和1.7%,具有较好的社区发现效果。
中图分类号:
[1] BLONDEL V D, GUILLAUME J, LAMBIOTTE R. Fast Unfolding of Communities in Large Networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10):10008. [2] NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(6):66133. [3] CLAUSET A, NEWMAN M E J, MOORE C. Finding community structure in very large networks[J]. Physical Review E, 2004, 70(2): 66111. [4] RAGHAVAN U N, ALBERT R, KUMARA S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E, 2007, 76(3): 36106. [5] BARBER M J, CLARK J W. Detecting network communities by propagating labels under constraints[J].Physical Review E, 2009, 80(2): 26129. [6] BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[J]. Advances in Neural Information Processing Systems, 2001, 14(6): 585-591. [7] TENENBAUM J B, DE SILVA V, LANGGORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323. [8] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000(290): 2323-2326. [9] PEROZZI B, AL-RFOU R,SKIENA S. DeepWalk: online learning of social representations[C] // Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2014: 701-710. [10] GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks[C] // Proceedings of the 22th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2016: 855-864. [11] WANG D X, CUI P, ZHU WW. Structural deep network embedding[C] // Proceedings of 22th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2016: 1225-1234. [12] CAO SS, LU W, XU Q K. Deep neural networks for learning graph representations[C] // Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2016: 1145-1152. [13] WANG Xiao, CUI Peng, WANG Jing, et al. Community preserving network embedding[C] // Proceedings of the 32th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI press, 2017: 203-209. [14] YANG C, LIU Z Y, ZHAO D L. Network representation learning with rich text information[C] // Proceedings of the 24th International Joint Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2015: 2111-2117. [15] HUANG X, LI J D, HU X. Accelerated attributed network embedding[C] // Proceedings of the 2017 SIAM International Conference on Data Mining. Philadelphia, USA: SIAM, 2017: 633-641. [16] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C] // International Conference on Learning Representations. Toulon, France: ICLR, 2016: 718-725. [17] VELICKOVIC P, CUCURULL G, GASANOVA A, et al. Graph attention networks[C] //Proceedings of the Int Conf on Learning Representations. Vancouver, Canada: ICLR, 2018: 485-497. [18] KIPF T N, WELLING M. Variational graph auto-encoders[C] // Proceedings of the NIPS Workshopon Bayesian Deep Learning. Barcelona, Spain: NIPS, 2016: 1611-1616. [19] SALEHI A, DAVULCU H. Graph attention auto-encoders [C] // Proceedings of the 32nd IEEE International Conference on Tools with Artificial Intelligence. Piscataway, USA: IEEE, 2020: 989-996. [20] XIE J Y, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis[C] // Proceedings of the 33rd International Conference on Machine Learning. New York, USA: ACM, 2016: 478-487. [21] WANG C, PAN S R, HU R Q, et al. Attributed graph clustering: a deep attentional embedding approach[C] // Proceedings of 28th International Joint Conference on Artificial Intelligence. San Francisco, USA: Morgan Kaufmann, 2019: 3670-3676. [22] BO D Y, WANG X, SHI C, et al. Structural deep clustering network[C] // Proceedings of the 29th International World Wide Web Conference. New York, USA: ACM, 2020: 1400-1410. [23] 郑文萍,王英楠,杨贵.基于双监督网络嵌入的社区发现算法[J]. 模式识别与人工智能, 2022, 35(3): 283-290. ZHENG Wenping, WANG Yingnan, YANG Gui. Dual supervised network embedding based community detection algorithm[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(3): 283-290. [24] PAN Shirui, HU Ruiqi, JIANG Jing, et al. Adversarially regularized graph auto-encoder for graph embedding[C] // Proceedings of the 27th International Joint Conference on Artificial Intelligence. Melbourne, Australia: IJCAI, 2018: 2609-2615. |
[1] | 邓文涛,章梦怡,何鹏,曾张帆,李兵. 基于网络表征学习的软件系统演化分析[J]. 山东大学学报 (工学版), 2023, 53(2): 77-86. |
[2] | 胡军,杨冬梅,刘立,钟福金. 融合节点状态信息的跨社交网络用户对齐[J]. 山东大学学报 (工学版), 2021, 51(6): 49-58. |
[3] | 林晓炜,陈黎飞. 结构扩展的非负矩阵分解社区发现算法[J]. 山东大学学报 (工学版), 2021, 51(2): 57-64. |
[4] | 王鑫,陆静雅,王英. 面向推荐的用户兴趣扩展方法[J]. 山东大学学报(工学版), 2017, 47(2): 71-79. |
[5] | 吕振,李苏雪,张传亭,袁东风. 一种基于结构信息的改进CNM算法[J]. 山东大学学报(工学版), 2017, 47(1): 37-41. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 44
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 109
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|